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Abstract o

o

This thesis develops a new technique for estimating quasi-homogeneous and :::%:T
quasi-stationary sea surface wave frequency-direction spectra using acoustic tomog- .::;Zi.;
raphy. The analysis of acoustic (mode and ray) phase and travel time perturbations tjw’f.
due to a rough sea surface is presented. Two canonical waveguides (ideal shallow ]
water and linear squared index of refraction) are used as examples for the mode ‘6‘!‘3‘::;.‘]
perturbation. The analysis is used to explain high mode coherence measured in :::,:.:?
the FRAM IV experiment. The forward problem of computing the acoustic phase :."*:;;
and travel time perturbation spectra given the surface wave spectrum is solved to ::o::‘,:‘
first order. An application of the technique to ray phase data taken during the T
MIZEX ‘84 experiment is shown. The inverse problems for the homogeneous and i“a;»‘.;
quasi-homogeneous frequency-direction spectrum are introduced. The theory is ap- " A‘:
plied to.synthetic data which simulate a fetch-dependent sea. The estimates made :";‘.::c
agree well with the “actual” (synthetic data) spectrum. The effect of noise in the §3§i‘,g:

travel time estimates is studied. The sensitivity of the technique to the number

of rays used in the inversion is investigated and the resolution and variance of the :;;;:;';‘
inverse method are addressed. ‘:'::Zi‘
R
':'.,"'..‘
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Z, acoustic eigenfunction of mode n

2 complex energy (wavenumber squared)
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depth
depth of acoustic source
space-time covariance of sea surface height

angle measured from perpendicular to acoustic path
grating angle locations

sea surface wave directional width parameter

sea surface wave spectrum equilibrium or rear face parameter
acoustic signal bandwidth

ray skip distance

distance from source i to receiver j in box. k
acoustic group silowness fluctuation of mode n
acoustic travel time fluctuation of mode n

acoustic spatial phase fluctuation of mode n
Kronecker deita function

Dirac delta function

acoustic radial eigenvalue fluctuation

error due to frequency-direction component dependence
sea surface wave frequency spectrum

sea surface wave cross spectrum

acoustic spatial phase of mode n

acoustic spatial phase of ray n

mean acoustic spatial phase of mode n

WKB spatial phase of mode n

coupled acoustic spatial phase of mode n

sea surface spectral peak enhancement exponent
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rms sea surface height | N
acoustic travel time of mode n SO
acoustic travel time of mode n T
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spectrum of travel time fluctuation of ray n ':..3:.
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spectrum of travel time fluctuation of mode n 0
covariance of travel time fluctuation of rayn -

covariance of travel time fluctuation of mode n ey
sea surface radian frequency o
sea surface radian frequency of spectral peak b
acoustic radian frequency ' ':::i:;
sea surface height ; “.'::9
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Chapter 1

Introduction

1.1 Background

Ocean acoustic tomography is fast becoming an established tool for remotely
sensing the ocean interior(1,2,3]. The basis of tomography is the measurement of
acoustic signal travel time perturbations due to the sound speed variations that are
caused by oceanographic phenomena along the various acoustic paths(4]. Linear
inverse techniques are applied to the measurements to estimate these sound speed
variations. Acoustic tomography has been successfully employed to study a variety
of ocean features such as mesoscale eddies(5,6|, currents(7), internal waves(8|, and

barotropic motions(9).

Until recently, using acoustic tomography to remotely sense the ocean surface
has been an unexplored possibility. This thesis introduces a technique that estimates
the quasi-stationary and quasi-homogeneous sea surface wave frequency-direction
spectrum from the spectra of acoustic travel time or phase fluctuations measured
at a number of receivers or transceivers. For acoustic transmissions which interact

with the sea surface, information on the surface height is included in the signal
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along with the information on the other internal ocean features.! The time scale '
of the wind-generated sea surface gravity waves (on the order of 10 sec) is much ".:.':
shorter than that of most other oceanographic processes (the fastest of which are

internal waves whose time scale is on the order of many minutes). Therefore, a

P

spectrum of the fluctuations naturally separates the surface wave effects from the f
other oceanographic processes. _ £
The motion of the sea surface is a function of space and time. This surface h
presents the appearance of a series of irregular moving crests and troughs that ;‘,-F
gradually grow and decay with time. If we neglect spray, air bubbles in the water, :g;'gf
and breaking waves, this surface is then a single-valued function of x, y, and t, which
we will denote as £(z,y,t). The water at and below £(z,y,t) is set into motion by .‘%
wind. The water motion extracts energy from wind and stores it in the form of o '
kinetic and potential energy. This energy is in turn dissipated by the turbulence -
below the surface and by wave breaking above. However, the dissipative effects are '.:::f
weaker than the generative effects of the wind. A considerable portion of the wave N E{:
energy can continue for a number of hours and travel hundreds of kilometers away . ’:
from the area with strong wind to areas of relative caim.[10] N
To a good approximation, the sea surface is Gaussian, locally homogeneous, and ,, ¥
short term stationary [11,12,13,14,15]. The Gaussian assumption implies that the ;
amplitudes of various spectral (sinusoidal) components are independent. Given a “‘
large number of independent wave components, the Gaussian property follows from ::‘
the Central Limit Theorem(16]. The Gaussian property allows us to describe the :%::.
sea surface with only the second moment, with all higher moments being derivable :'
from the second. This second moment is called the time-space covariance function '; .
and the various spectra are Fourier transforms over the different space and time E"
0

10f course, this technique is not applicable to acoustic signals which have no interaction with the
ses surface, ¢.¢. acoustic rays or modes trapped in the desp sound channel.
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variables.[17] The locally homogeneous assumption implies the changing sea state
has decorrelation space scales much larger than a surface wavelength. The short
term stationary assumption implies that the sea state has decorrelation time scales
much longer than a wave period.

Sea surface waves are usually characterized by various spectral descriptors,
among which are the frequency spectrum, the spectrum of the time series of sea sur-
face height measured at one spot, the wavenumber spectrum, the two dimensional
spatial spectrum of sea height measured at one time, the wave number-frequency
spectrum, the three dimensional spectrum of sea height at all time and space, and
various spectra in between. Of interest to this thesis is one particular spectrum:
the frequency-direction spectrum, a two dimensional spectrum which sorts the wave
energy by temporal frequency and by the direction the waves are travelling[18].

Prior to the early 1950’s, there were few reliable and consistent methods for
observing the sea surface wave field. Since then, many techniques have been de-
veloped to measure the various spectra. The measurement techniques for the one-
dimensional frequncy spectrum can be broken down into two categories: those which
directly measure sea surface elevation and those which are based on other properties
of the wave field as described in a review of the study of wind waves by Barnett
and Kenyon in 1975(17|.

In the direct methods, a common technique that is used is to insert a rigid wave
staff into the water and measure an electrical property of the staff that is influ-
enced by the amount of the staff immersed in the water. All three basic electrical
properties (resistance, capacitance, and inductance) have been utilized but the most
successfull has been capacitance wave staffs(19]. The wave staff method is restricted
primarily to the laboratory and relatively shallow water because it requires a fixed
platform from which to operate.

A second class of devices measure some other property of the wave field be-
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sides height and deduce the height spectrum. Of these, the two most common
are pressure tranducers and accelerometers. Pressure tranducers consist of a wire
attached to a rigid diaphragm. Changes in pressure due to wave motion act on
the diaphragm, changing the tension on the wire{20]. The pressure fluctuations
are then transformed into sea height estimates through linear wave theory. Again,
this method is restricted to shallow water. Accelerometers, configured in a buoy,
measure the vertical acceleration in the wave field . The sea height is related to
the acceleration by linear theory. These buoys, sometimes referred to as wave rider
buoys, can be deployed in any depth water and have been widely used.

The measurement of two dimensional spectra has advanced in the past few years.
In 1960, Cote, et al. obtained the first two dimensional spectrum of the sea surface
using aertal photogrammetry(21]. Since, then a number of techniques have been
developed which can be broken down into four categories: pitch-roll duoys, wave
staff arrays, acoustic backscatter methods, and asrcraft- and satellite-based radar.

The pitch-roll buoy and the related cloverieaf buoy measure vertical acceleration,
pitch, roll, and heading(22,12,23,24]. From these, directional spectra estimates can
be obtained, however, the resolution is limited by the fact that only the first few
Fourier coefficients of the angular distribution of spectral energy can be determined.
Much success has been achieved in measuring two dimensional spectra with wave
staff arrays. The work was pioneered by Barber in the early 1950's{25] and was
extended by Munk in the early 1960's{26]. An array of wave staffs measure the
sea surface elevation at a number of locations to give estimates of the time-space
covariance function. The Fourier transform of this covariance function yields an es-
timate of the two dimensional spectrum. This technique has been used successfully
by Donelan and his co-workers to measure directional spectra in Lake Ontario(27].
However, as previously mentioned, this technique is restricted to shallow waters
like Lake Ontario because of the need for a fixed platform. Acoustic backscatter
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techniques rely on the transmission of an acoustic pulse underwater and the reflec-

tion of that pulse from the underside of the sea surface wave field. The measured AN

Doppler shifts can be used to infer the velocity field near the surface and hence the 2’;'_
directional spectrum.[28,29,30] Hill and Farmer 28] have developed a buoy which ’f-‘ﬁi y
samples the backscattered acoustic Doppler shifts in azimuth and estimates the lo- *
cal frequency-direction spectrum. These methods have been used successfully but S}\.‘ .:
are restricted to measuring the spectrum in one location. ti:"*-
Labianca (31| has developed a technique for estimating the frequency-direction : ‘\.:I:
spectrum using a “full wave” inversion method. Labianca proposes measuring the \ "."‘.“
forward-scattered field from a continuous wave (CW) source at a number of re- E'.E.'E’
ceivers in a circular array around the source. The spectrum of scattered waves have Ef.‘ifx
sidebands introduced by the interaction with the moving sea surface. The acoustic :&:
spectra are then inverted using linear inverse techniques. The Labianca technique is, ( 7
in some respects, similiar to the method we introduce in this thesis. Both are based " {")‘fl‘ ¥
on acoustic forward scattering by the sea surface and both use a similiar inversion )é‘l}i
technique. However, there are important differences. 1) Labianca’s technique is u L
restricted to relatively short ranges and a single interaction with the surface, while E"E‘ﬁ
our technique, as we will show, is useful at much longer ranges and assumes many r:i“y*
acoustic interactions with the sea surface. 2) His technique assumes, correctly for - Y
his short ranges, that the sea surface is homogeneous while we are able to invert j‘\-'.-: DN
for the inhomogeneous spectra. 3) The Labianca technique depends on frequency » ;,:*
effects of the sea surface waves on the acoustic transmissions while we use the phase R\& W
and travel time effects. .-:.‘
There are a number of methods by which directional wave spectra may be ob- ',:."3}.':':-;'
tained using microwave radar techniques. First, there are those techniques which ?3?33::2
directly image the surface elevation and take a two-dimensional tranform later. ‘ )
These direct imaging methods are Real Aperture Radar (RAR), Surface Contour "*'\" y)
R
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Radar (SCR), and Synthetic Aperture Radar (SAR){32]. RAR’s map the power
backscattered from the ocean surface to fixed side-looking antennas with fine res-
olution in angle. Range resolution is obtained using very short pulses. The re-
lationship between power received and wave height must be known to map the
surface. This relationship is not well known at present. Also, RAR is not usable
from satellites because of the need for fine anguiar resolution. SCR uses a narrow,
downward-looking microwave beam scanned perpendicularly to the direction of air-

craft travel. Horizontal resolution is obtained by a small illuminated footprint while

e e T T

range resolution is obtained by short pulses. SCR has been very successfully used
) to measure sea spectra from aircraft(33]. It is also not usable on satellites because
# of the need for a small footprint. SAR maps the ocean surface to fine resolution
with a fixed, side-looking antenna that simulates a large antenna by continuously
scanning while it travels above the ocean surface{34]. Range resolution is obtained
‘ with short pulses while azimuthal resolution relies on mapping Doppler shifts into
; positions on the sea surface. For a moving ocean surface, azimuthal resolution is a
complicated function of the surface wave velocities and scattering intensity. How-
'y ever, SAR’s from aircraft and satellites have produced spectra that agree with other
: methods(35,36,34].
A microwave measurement that images in range while it integrates in azimuth
is the Remote Ocean- Wave Spectrometer (ROWS). The technique performs a one
dimensional transform in the direction the airplane is traveling. ROWS has been
developed using both frequency modulation (FM) and amplitude modulation (AM).
The FM technique involves illuminating areas of the ocean surface that are small
in range extent but large in azimuth and measuring the mean Doppler shift from
the surface using the FM part of the coherent return. The large azimuthal extent
averages out waves not traveling in the look direction, thus producing directional

discrimination. Linear wave theory is used to map the measured velocities into wave
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| spectral densities. This technique has been used from aircraft but theoretically -{v::‘:‘:
'i.‘ :i
can be used from satellites(32]. All of the radar based methods have an inherent o
180 deg ambiguity, i.e. they cannot differentiate between waves traveling in opposite ' ﬂ"
directions. We show in this thesis that our technique suffers the same 180 deg {:‘;ff':‘
¥
ambiguity. Of course, all the radar based methods need a platform such as an . 3.'::!
0.0!1‘1’
aircraft or satellite to operate from and this can limit the time spent over any one .
1t ‘,
area of the ocean. ‘;'a::.
[Be ':
With all of the above described techniques, one might ask why bother developing ) ::.::.:,
KA
a new method to study surface waves. First, the capabilities of acoustic tomogra- . e
phy are now enhanced. Tomography experiments which transmit acoustic signals ;::‘3';.2
) "
at fast enough rates (greater than .25 Hz) can now study surface waves besides the ;g:::?f
bty
other oceanographic phenomena. Second, tomographic experiments can last many ::jof:}'
weeks and cover hundreds of kilometers of ocean, depending on battery limitations, ,;::,'-...A
NS
number of transceivers, etc. This enables the continuous study of waves in a large :.,::'.:E:.
RO W
area of the ocean for that time. Third, tomography can resolve spatial changes ':::-Zj::3
t ' ‘V. ?9§
in spectra in the covered area. For instance, tomography can estimate surface |
St
wave spectra in areas which are fetch-dependent. Fourth, we can integrate other :‘::
WYY,
wave spectra measuring systems (such as buoys or satellites) into the tomographic ), .“’;::
inversion producing a better overall estimate. Fifth, and most important we feel, to- RRLY
mography enables the simultaneous measurement of surface wave spectra and other X ‘é}ﬁ:\t
AW
oceanographic features such as currents and internal waves. Surface wave/current ‘ "> '
interactions and surface wave/internal wave interactions{37,38] are being studied ::5‘*:"@‘;';
and we hope that tomography might be able to assist in those investigations. - :-
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1.2 Thesis Overview

This thesis is divided into five chapters. Chapter 2 describes the effect of the
rough sea surface on acoustic modes and rays. Modes and rays are the standard
descriptors of acoustic propagation in the ocean. Fluctuations in the local height
of the ocean cause fluctuations in the arrival times and phase of modes and rays.
The relationship between sea height and travel time fluctuation is developed. Be-
sides this shifting (or “wandering”) in time, the shape of the acoustic pulse can be
distorted (or “spread”). Coupled mode theory is used to assess the accuracy of the

wander-only or adiabatic approximation, upon which our inversion scheme depends.

Chapter 3 first gives an overview of surface wave spectral theory. There, the
spectrum of the acoustic travel time and phase fluctuations is shown to be related
to the frequency-direction spectrum of the sea surface when the wave spectrum is
homogeneous. Chapters 2 and 3 together soive the forward problem. In fact, in
the homogeneous case described in Chapter 3, the frequency-directional spectrum
is shown to be an algebraic transformation of the measured acoustic phase and
travel time spectra. We show that, like radar-based methods, this technique also
suffers from a 180 deg ambiguity problem. The theory developed in this chapter
is applied to data measured on two days in the 1984 Marginal Ice Zone Experi-
ment (MIZEX ‘84) in the Greenland Sea off Spitzbergen. Frequency spectra were
estimated that are related to wind force data measured on the two days.

Chapter 4 addresses the tomographic inverse problem for the frequency-direction
spectrum when the spectrum is spatiaily inhomogeneous. We solve the inverse prob-
lem using a variant of the damped least-squares technique. This technique involves
the physically justified assumption of smoothness constraints on the frequency-
direction spectrum spatially and in direction. It is shown that only one inverse

operation need be carried out in these two dimensions, and the resulting general-
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ized inverse operator applied at each frequency of interest. The effectiveness of this
technique is investigated using synthetic surface wave spectra based on a model
by Donelan|27]. The synthetic acoustic spectra are measured at a number of to-
mographic tranceivers and then the generalized inverse operator is applied to the
measured acoustic spectra to estimate the spatially dependent frequency-direction
spectrum. Results are described for both modes and rays. The effect of noisy
measurements is quantified. The results using noisy data are shown to agree with
theoretical variance estimates from inverse theory. Resolution issues associated with
the inverse operator are also discussed. Finally, Chapter 5 summarizes the findings
of this thesis.

This thesis is multi-disciplinary and, as such, deals with different quantities
which are traditionally represented in the literature by the same variables. An
example is radial frequency of acoustic waves and radial frequency of surface waves,
usually represented by w. To prevent confusion, we have redefined a number of
variables in this thesis, e.g. w remains acoustic frequency while we have chosen
to represent surface wave frequency. A List of Symbols is provided on page 14 that
might be useful to the reader.
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Chapter 2 o

Acoustic Scattering by a Rough Sea Surface L

This thesia is concerned with tomographic inversion of the travel times or phases e
of acoustic signals for sea surface wave spectra. Hence, we will mainly concentrate Shh
on rough surface effects on signal travel times and phases. To a lesser degree, the ‘
effects on amplitude will be also touched upon, but only in the context of predicting
signal-to-noise ratios and pulse spreading effects which might degrade the time or W
phase measurement. o

In this chapter, we will describe the effect of the rough sea surface on acoustic
normal modes (Section 2.1) and rays (Section 2.2), which are standard descriptors i
of the acoustic field in the ocean. “.;:‘

Normal modes constitute a “full wave” solution to the wave equation in the N
ocean waveguide. Fluctuations in the local height of the ocean waveguide cause

fluctuations in the arrival times and phases of the normal modes which have a R
turning point at the surface. If the slopes of the surface waves are small, the p
coupling between modes can be taken to be negligible. Conditions for the validity -

of this approximation (called the adiabatic approximation [39]) are presented. The W
adiabatic approximation implies that, at the receiver, the mode arrival only shifts nat
(or “wanders”) in time but that the shape of the arriving pulse is not distorted ROt
(or “spread”) by energy coupled from other modes. Our inversions for sea surface '
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spectra depend on the adiabatic approximation where arrival time fluctuations are
uncontaminated by pulse distortion effects.

Rays are the paths of acoustic energy obtained when the frequency of the trans-
mitted sound is assumed infinite[40]. We also relate the fluctuations in ray arrival
times and phases to the sea surface roughness. We assume the ray pulse wanders,
but is undistorted by scattering with the surface in regions where the adiabatic
mode approximation holds valid.

Finally, in Section 2.3, we summarize the results of this chapter that we need to
use in Chapters 3 and 4.

2.1 Normal Modes

Here, we concentrate on rough surface effects on the propagation of acoustic
normal modes. We start with a overview of mode theory in a horizontally stratified
ocean in Section 2.1.1, followed by the generalization to a range dependent ocean
in Section 2.1.2. We concentrate on the phase and travel time variations due to the
rough surface in Section 2.1.3 where we assume the adiabatic and WKB approxima-
tions. The variations are dependent on the background waveguide characteristics
such as depth, sound speed profile, etc. We use two canonical examples, an ideal
waveguide and an ni-linear profile, for illustration of the rough surface effects in
Section 2.1.4. The analysis is used to explain the high mode coherence measured in
the FRAM IV experiment in Section 2.1.5

Coupled mode effects are addressed in Section 2.1.6 where we give a solution for
coupled mode pressure based on a single scattering approximation. Bragg scattering
is discussed in Section 2.1.7 that involves the matching of the surface wavelength and
and mode cycle distance. The validity of the adiabatic approximation is discussed.
Also, in Section 2.1.9, the validity of the WKB approximation is quantified.
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Figure 2.1: Horisontally stratified waveguide.
2.1.1 Normal Modes in a Stratified Ocean.

The general horisontally stratified problem in underwater acoustics is the one
illustrated in Fig. 2.1. The ocean waveguide is of a constant depth H with a sound
speed c(z) and density p(z), constant in range but not in depth. The top boundary
is a pressure release surface, i.e. p(r,z = 0) = 0. The bottom is also a horisontally
stratified medium. The source is located at 2 = 3 and r = 0 with an acoustic
power of TI. Our goal is to find the pressure field due to this source at all z and r.

We describe the acoustic pressure as a sum of normal modes. It is convenient
to introduce a particle displacement potential ¢, in terms of which the pressure is
given by

p=-sZt. (2.1
The three-dimensional wave equation (see [41] for derivation) for the displacement
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potential is i

1 3% ; 1::-9“:

V=G (22) i

For a harmonic source e™***, p = w3py, and the wave equation becomes the Helmholtz wom Y

equation et
3

Viy+ 59 =0. (2.3) i

For sources on the z axis, the field is symmetrical about the z axis and the wave
ety
equation in cylindrical coordinates becomes et
v AL ‘.u
Fy 13y Fy s
— - —a— —_— 2 . v ',
e T Tav (24) AR
To soive Eq. (2.4), we assume a separable solution. ¢ ~ U(r)Z(z). Equation (2.4) i‘:;':ﬂ‘ :
then becomes el
U + 10 | Z(a) o R
L + -==0 (2.5) ara
U(r) Z(zs) o3 !

where the prime denotes differentiation with respect to the variable in the paren-

htiy :t‘;.
theses. The separated equations become :_ﬁ E‘a‘ﬁ

0" + S+ 0) =0 (2.6) i
2%(s) + 1z () =0 (2.7) St

Ay

where we define the wavenumber as Slany
2 NS

K (2.8) ¥l

and the separation constants are related by

x? ot =k, (2.9) Nty

Equation (2.6) is Bessel’s equation of the zeroth order. Its solution is the cylin- z
drical Bessel function of zeroth order Jo(xr). For the far field, where xr > 1, we "‘%:k"
WG,

can expand the Bessel function taking only the outgoing wave, so that el

1 .
U(r) = 21‘"‘-("-9/4)' (2.10) "
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The amplitude of U(r) and therefore ¢ decrease as r'/2 and the phase dependence \:,','.g
is the same for all depths at a constant range. .?Sg
‘( 3

If the harmonic source is located at a depth z, , we can write the pressure in . '
the waveguide as a product of the Z,, Un, and e™**[4]1] R _,:
"

: - , v '§:¢

p(r, z,t) = e @+%) ; -l‘—“- _r_Z,..(zo)Z...(z)e“"' (2.11) Ay :

where ::g:;
t

\4

m = ine psc,I1 (2.12) 'E::E{

v, m ":'(r

bod \

vm = [ 0.2A(2) ds (2.13) -

I

where ¢, and p, is the sound speed and density at the source depth, and o is ’ :E-:
the density at the receiver. Equation (2.11) is valid for any horizontally stratified ’Q
waveguide without attenuation. However, the evaluation of the eigenvalues is, in i
general, not analytic except for a few cases such as the hard bottom, constant sound :E::;

W

speed wavguide or the ni-linear waveguide; both will be discussed further on. :&:;
e

2.1.2 Normal Modes in a Range Dependent Ocean 2

4

When the ocean is not horizontally stratified, the Helmholtz equation (Eq. (2.3)) :}

is no longer separable, and we have to turn to coupled mode theory to solve for o '}
the pressure field. Coupled normal mode theory for a range dependent ocean was R
R

developed independently by Pierce[42] in 1965 and Milder({43] in 1969. An excellent s
account of coupled mode theory can be found in a PhD thesis by Rutherford(39). X0

Rewriting Eq. (2.3) for a range dependent waveguide, o

W

o‘: :

V(r, 2) + k¥(r,2) ¥(r, 2) = 0 (2.14) "::"

with the appropriate boundary conditions. The range dependence can occur in two !
different ways. The sound speed, and therefore the wavenumber, can be a function N
3
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of range. But even with otherwise stratified sound speed profiles, the boundary ..‘:;":::“
(UL

conditions on ¥ may be a function of range as it is with a rough sea surface. The ‘.::-‘.::-
boundary and wavenumber conditions on ¥ might also involve the range-dependence ﬂg;;
of density(39], but we will not discuss density variations further. 3 ':$¥t
N

Pierce{42] postulated a solution to Eq. (2.14) that was partially separated. i.e. ‘!. .53

9 Ao, 4

¥(r,2) = 2; Un(r)Za(z; 7) (2.15) ?5}:5" |

ey

where now the depth functions Z, are range-dependent as well as depth-dependent. :2.':‘
)

Equation (2.7) then becomes -
0N

P Za(5;r iy

_%’_l + [k*(r, 2) = K2(r)] Zn(2;7) = O. (2.16) ::g 3

The boundary conditions which the Z, must satisfy are that pZ. and the normal >
_—

component of particle velocity, V, Z,, be continuous across a boundary. For a rough E& f

boundary defined by z = £(r), ¥, is given by X

oY
V. = - . 3— - 6-2 (2.17) o

5 4, Jﬁ"h
dr ia:_ﬁ
] Q *

The first step in solving this coupled mode problem is to substitute the trial
solution Eq. (2.15) into the Helmholtz equation (Eq. (2.14)) which gives

- » [ ; ) - z
Y |UnZn +2Un2, + U"rz" + U"rz" + UnZn + Un (%% + k(r, z)z,.)] =0

(2.18)
where the dot denotes differentiation with respect to r. The depth functions Z,(z;r)

form an orthonormal set at each range r such that

/o - PZn(2;7)2m(2;7) d2 = ba m. (2.19)




If Eq. (2.18) is multiplied by pZm(2;r) and integrated over depth, we get
Olr) + 2Um(r) + £4(Un(r) == T [A.....U,. + Bn (5 + sz,.)] (2.20)
r ol "

where the coupling coefficients A,., and B,,, are given by

Ama(r) = /o > p(2)2m(2;7) Zn(2;7) d2 (2.21)
Bma(r) = /; > P(2) 2o (2;7) Zn(2; 7) da. (2.22)

Often, a more convenient “reduced” differential equafion is obtained by the substi-

tution of

Fm
Ua(r) = 2=t (2.23)
into Eq. (2.20). The reduced radial wave equation then becomes
- 1 .
Fu+ (omlr) + 27) Fnlr) = = T (AmeFa+ 2Bmafi). (224

natm
The ;’,1 term can be neglected except within a few wavelengths of the source.

The adiabatic approximation consists of setting A and B, to zero in Eq. (2.24),
i.e.

Fn(r) + &3,(r)Fn(r) = 0. (2.25)

The difference between the range-dependent Eq. (2.25) and the range-independent
Eq. (2.6) is that the horizontal wavenumber «,, is now a function of position. The
spatial phase term from Eq. (2.11), £mr, must be modified to account for the range
dependence. A standard approximation to make here is to assume that the spa-
tial phase has the form [ k(') dr’. This approximation is known as the WKB
(Wentzel-Kramers-Brillouin) approximation, and is valid when the variation in the
properties of the medium per wavelength is small(40].

In the depth equation boundary conditions, dropping £ terms in Eq. (2.18) gives

3
Vi (2.26)

35

PRI DO RS A Y IS S R ST \"u. w."'-. A \‘\ ~
n N e e i (‘1" \\&'\' A

A IO, o N )1, i‘\m’\.&{\“‘{x‘f}s‘\'ﬁs 'C\..'L\'P T\'("";Qn\



o PO U \J VININUAONLE
e
pav
(SN
A
VR
b
making the depth equation (2.16) as easy to solve as the range independent case o ,
| W X
| except we have to solve it at all ranges of interest to get the horizontal wavenumber Vb
kn(r); moreover, we need the eigenfunction Z,(z;r) at source and receiver. The
range-varying horizontal wavenumber also appears inside the square root portion ‘ :
Y
of Eq. (2.11). This amplitude change is much less important than the phase change W, :g:
and an average or background value for the wavenumber (dénoted by R,) can be ii' o
1
used there. From here on in, the time dependence, the 7/4 phase shift, and the ‘ 0 )
normalization term g¢m will be taken as implicit, so that the acoustic pressure be- é\%.'h::
e
comes roog
1 . rr ‘ '
p(rz) =Y Zn(20;0) Zn(2; 7) e Jo (e (2.27) sy
n VEn" \ .‘l"‘
\
In this form, one sees explicitly that the modal eigenvalues are a function of range, ' o7
and it is through the x,(r’), as well as through the mode functions Z, at the source 3 1.:
and receiver, that one introduces the effects of roughness. For a particular realiza- :3:'.
tion of a rough surface, which we will consider throughout this thesis to be “frozen” ¢ 2
during the time of transmission of a single pulse, the adiabatic approximation to ::.'::"\ f
RO
the pressure field can be expressed as NN
R
)
1 ( . 'C.. r’ { y
Prd) = S a0z hew o) B
n 'b‘.‘h “:::t
il
where we have broken x,(r') into the sum of an average, range independent back- QR

ground component R, and a range dependent wavenumber fluctation component,

€a(r’). The amplitude, phase, and group velocity fluctations of the pressure due
to boundary roughness can be determined in this adiabatic context by specifying
a surface height distribution function and then taking the appropriate moments of
Eq. (2.28).
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2.1.3 Phase and Travel Time Variations

The data used in acoustic tomography are the travel time variations of an acous-
tic arrival. In this thesis, we are concerned with using acoustic tomography to de-
duce information on the ocean surface height distribution In this section, we show
the connection between the surface height depth variations and modal phase and

travel time variations.

Phase The phase of an acoustic normal mode, under the WKB approximation,
from Eq. (2.28), is

= R+/Re (r) dr (2.29)

=R, | e .
We define

R

Ap, = /o ¢n(r) dr (2.30)
as the phase variation. The range dependence of the eigenvalue is assumed to be
constant in time for the time-of-flight of the mode, i.e. we assume the “frozen”
approximation. The implications of the frozen approximation are discussed later in
Section 3.8. Fig. 2.2 illustrates an adiabatic mode adapting to the change in sea
surface height.

The covariance of the phase variation at times ¢, and t, corresponding to two

different transmissions is given by
9709 (2,,3) =< Apa(ti)Apa(ts) > (2.31)

where (f) denotes the expected value of f.

We can write the eigenvalue variation as a power series in the sea surface height
€n(rith) = E cjnl’ (r1,t1) (2.32)
J

where the coefficients ¢, are dependent on the background waveguide sound speed

profile. The ¢,, are explicitly calculated for j = 1,2 in Section 2.1.4. Convergence
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Figure 2.2: Adiabatic mode adapting to changes in sea surface height. PRaNy

issues for this series will not be discussed except to note that cjné > cjné’ for j > 2 i .
is necessary to be able to write N

Aga(ts) = €1n / E(r1, 8) dr. (2.33) N

Note that we also have assumed that the background waveguide is range indepen- ‘?—*
dent. If the background waveguide is range dependent and the adiabatic approxi- aed
mation still holds, the problem is more complicated but solvable. For example, the : ‘
¢in become ¢yn(r;) and must remain within the integral in Eq. (2.33). If the back- bR
ground waveguide is very range dependent, mode coupling can make the problem o .:S"sr::
very difficult. Using Eq. (2.33) in Eq. (2.31), the phase variation covariance to first ""‘t:':‘,“u

order becomes

R R
1’?‘“(“,‘3) = an < /; f(fl,tl) df; /; E(fz,t:) dr: > . (2.34)

If the sea surface statistics are stationary in time and homogeneous in space, Eq.
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(2.34) can be written as

gmede(t) = ¢l /o * /o * Z(r,t) dry dr, (2.35)

where now t = t, —¢t3, r = ry — r3, and Z(r,t) is the space-time covariance of the
sea surface. The variance of the surface displacement is 0 = Z(0,0). Since Z(r,t)
is dependent only on the difference of r, and r;, the double integral in Eq. (2.35)

can be rewritten as [16]
omedee) =, [ ';“(R — ) Z(r,¢) dr. (2.36)

We can approximate Eq. (2.36) at ¢t = 0 to get an estimate of the rms “wander” of
the phase variation, i.e.
where ¢ is the correlation length of the zero mean sea surface height. If we write

the phase variation to second order, we get
R ~. 2
Apn = [o (c1né + €% dr. (2.38)
Taking the expected value of Equation(2.38) and assuming a zero mean surface,
(Agn) = Reanot. (2.39)

Therefore, to second order in surface height, phase variation is not zero-mean but
has a bias given by Eq. (2.39). Figure 2.3 illustrates the effects of wander and bias
schematically. These are similiar to the effects described by Flatte{8] due to internal

waves,

Travel Time We now examine the mode travel time fluctuations due to the rough
surface. The travel time 7, of a normal mode at frequency wy is given by stationary
phase arguments as

-a%{go,.(r,w) ~ WTn)lwe =0 (2.40)
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Figure 2.3: Travel time wander and bias due to surface waves.

or
- )
o = ﬁ"‘" (2.41)
If we now include a fluctuation component in the phase, as discussed before, we
obtain
a9 R J¢,
Aty = bi_dAp' = /o xdf (2.42)

where 4 = Asf’ is the group slowness (inverse of the group velocity) variation.
Similiar to the modal phase, the travel time variation can be written as a variation
in the surface height &, i.e.

Afn(tl) = /on d;nf(fh‘;) dr + O(% (2.43)

where H is the characteristic waveguide depth and dy, = d¢y,/w (which is derived
for two canonical waveguides in Section 2.1.4). We can write the relationship be-
tween the travel time covariance and the space-time covariance function of the sea
surface as

uPR(t) =< Ara(t1)ATa(ts) > (2.44)
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or, following the arguments used for the phase, .::isf
. 2
+ L)
vm() = di, [ (R~ ) Z (1) dr. (2.45) i
- "5;:;
" As above, we can approximate Eq. (2.45) at ¢ = 0 to get an estimate of the rms :":
"t . N
L “wander” of the travel time variation, i.e. o
n'?b'
Oar, = dl,.o'gv 2R6 (2.46) ::::;,
o
{
where § is the correlation length of the zero mean sea surface. If we write the travel ::::Eff‘
U
7 time variation to second order, we get o
4 W
o R : ’G:.:G
‘X Aty = /o (diné + d2né?) dr. (2.47) N
i
L Taking the expected value of Eq. (2.47) and assuming a zero mean surface displace- hek
o ment, we get the “bias” of the travel time variations ‘;::e
1.4 R .1‘
2 o
l,' (Afu) Rd’nae (2.48) ) ':'1'
o 3
o 2.1.4 Canonical Waveguide Fluctuation Parameters ;Ez
o *
e 1)
o This section describes the phase and travel time fluctuations due to a rough sur- .%
_i:;i face for two canonical waveguides: the ideal hard bottom shallow water waveguide o
e t
) and an n’-linear waveguide which emulates the upward refracting conditions found :::.E:'
§ 9.8
a in the Arctic. W
M A
et
£
f’.’E; Ideal Hard Bottom Shallow Water Waveguide The ideal waveguide we will :‘E':E
A ¢
xj?f, consider here is the so called “hard-bottom” waveguide [40] shown in Fig. 2.4 in : ';i
t)" L
- which the compressional wave speed and density in the bottom halfspace go to 3
‘:: infinity. The water column is isovelocity, and the waveguide is range independent ::',i;
(]
s %
o 41 h"‘:
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Figure 2.4: Ideal hard bottom shallow water waveguide

except for the air-water interface roughness. For the background waveguide (no
surface roughness effects included), the vertical mode functions Z,(z) are given by

Zn(2) = ansiniaz (2.49)
where the vertical wavenumber %, and the horizontal wavenumber &, are given by

_(a=Yrx
7= 2T (2.50)

and

Y (C (2.51)

where Hy is the depth of the water column. The normalization factor a, can
be found by substituting Eq. (2.49) into the orthonormality condition given by
Eq. (2.19) which gives a, = ‘/?,E . To include the effects of surface roughness, we
add a variation £(r;) to the water depth H, in Eq. (2.51) to obtain

w\? (n-— 1)
Ka(r1) = \) (:) - m. (2.52)

1)

E b X 3 ' Wy
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N If we assume that Hyo » £(ry) for all r,, then we can expand the (Hy + £(r))~?

* term and the square root to get

: Tl _ (3, m) (L)
§: Kn = Rn [1 * T (23}, + 2x;) (E) + ] : (2.53)

The variation in the horizontal wavenumber,

ii €n(r1) = Ka(r1) — Ra (2.54)
"
E: which from Eq. (2.53) gives
’ 3 3 3
' = % [Hio - (5 + :T";) (z%)’ + ] . (2.55)
;'2 We saw that to second order, €, = ¢1n€ + c32£2 so that for the ideal shallow water
t waveguide ”

Cip = -R_.._RHT; (2.56)
N and
b Can = — a (3 + T ) . (2.57)
" ™ TRHI\2 T 2’2
N The relative importance of the wander and bias of the phase variation can be as-
i sessed by looking at the ratio of the first two terms in the series expansion for the
X, eigenvalue variation et - ¢
7 el = (2 + 2a:=) H' 12:38)
'i: The ratio in Eq. (2.58) tells us that there are two ways for the bias to become
.:‘:. important. First, for any mode, a large changes in the surface height can increase
i‘. the bias. Second, for any mode with a large vertical wavenumber, (i.e. with v, > x,)
:&:' very small changes in the surface height can have a drastic impact on the bias. It
) will be shown later that the coupling also becomes very important for modes with
"‘ large 44 or when the changes in the surface height become large, so the adiabatic
Ei: approximation is not adequate to describe the propagation. But when the adiabatic
é!é 43
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approximation does hold, the bias is much less than the wander for reasonable .‘E ,n.':, :

A

acoustic ranges. et

The group slowness variation is to second order As?" = d)o€ + d2n 2. For the .,.q.\‘

) )

shallow water waveguide :4: n'é::

dv. = dcin - _37':‘7'2‘ 2.59 ‘::::. l::

"% T THa (2:39) i

and PR

]

37238 . . T o

dz,. = 2R£H3 (1 + E":") (2.60) r;: :s:

oo

where 37 = ;% is the unperturbed group slowness for this waveguide. We can 'f:'.,'_'a.'.:w

calculate a ratio of bias to wander terms for group slowness in the same manner as '-“":;s

we did for the phase, i.e. ;\ - :f

dn€?| _3( M) ¢ ood

dnt| 2\ TR By (261) “i,‘

P ‘*5“‘1

Similiar comments can be made about the importance of the travel time bias as for K N'J?I,::':

it tn

the phase. ’:‘,::::‘:"‘:;
At this point, it would be useful to consider two examples. The rms wander and _—

bias of the phase and travel time can be calculated for simple example waveguides i$1 v,

using Eqgs. (2.37), (2.39), (2.46) and (2.48). For a frequency of 220 Hz, surface :;g'- :::

Ty 3% el

correlation length of 100 m, rms surface height of 1 m and sound speed of 1500 m/s, YL

Tables 2.1 and 2.3 lists the wander and bias estimates of the phase and travel time
for 5 modes. Table 2.1 pertains to a 30 m waveguide and range of 5 km, while
Table 2.3 is for a waveguide depth of 180 m and a range of 50 km. Tables 2.2 and
2.4 list the equivalent ray angles 4,, and number of equivalent ray surface bounces
M for the modes[44]. The equivalent ray angles and the number of surface bounces
are higher for higher modes. Thus the wander and bias are expected to increase
with higher mode number because of the increased 1‘: as the results in Tables 2.1 to

2.4 show. Also, modes in the 180 m waveguide are affected less than the modes in

44
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n | oay, (rad) | (Apa) (rad) [ oar. Em) (ATs) (ms)
1 .10 -.02 .07 02
2 91 23 .68 17
3 2.6 -.67 2.0 55
4 53 -1.4 4.6 14
5 9.4 -2.6 9.2 3.1

Table 2.1: Shallow water waveguide wander and bias, depth of 30 m, range of 5 km.

n /|0y (deg) | M
1 3 [
2 10 14
3 17 25
4 23 38
S 3 50

Table 2.2: Shallow water waveguide equivalent ray angle and number of bounces,
depth of 30 m, range of 5 km.

the 30 m waveguide. Another interesting result from the Tables is the fact that the
phase and travel time bias are indeed much less than the wander. In addition, the
travel time bias is positive, i.e. the arrival times are longer than we would expect
from a smooth surface. The magnitude of the phase wander in Tables 2.1 and 2.3
indicate that only modes 1 and 2 for the 30 m waveguide and modes numbers less
than about 17 for the 180 m waveguide could be coherently averaged(4| for SNR
gain (as is commonly done in tomography). Coherent averaging needs rms wander
much less than 90 deg and only the modes mentioned meet that condition.

nl.Linear (Arctic) Waveguide Here we follow Brekovskikh [40], who derives
analytic expressions for the mode eigenvectors and eigenvalues for an “ni-linear”

waveguide. If we note that, to first approximation, the Arctic can be modeled as
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n | 0oy, (rad) [ (Apa) (rad) | oas, (ms) | (AT,) (ms)
1 001 -.0002 .001 .0001
.1 12 -.02 .09 01
9 43 -.08 32 04
13 .93 -.13 72 .10
17 1.7 -.23 1.3 .20

Table 2.3: Shallow water waveguide wander and bias, depth of 180 m, range of
50 km.

n | Om (deg) | M
1 .5 1
) 5 12
9 9 23
13 14 34
17 18 46

Table 2.4: Shallow water waveguide equivalent ray angles and number of bounces,
depth of 180 m, range of 50 km.
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B isothermal (0° C) and isohaline (35), then the sound speed is linear with depth z, !
c(z) =6¢ + bz’ (2-62) "'! '

K where ¢o = 1449.2 m/s and b = 0.016 m/s/m is the sound speed gradient. For the e

“nl.linear” waveguide, we write e

e(z) = 7%7: (2.63) ‘.:’-'c

which, for az < 1, can be approximated by "X
e(z) = co(1 + -;-a: +..). (2.64) L,

To match the approximate psuedolinear profile in Eq. (2.64) and the linear profile o
in Eq. (2.62), we set a = 2 = 2.21x10"*m~!. Due to the smallness of a, the
expression of Eq. (2.63) can approximate the linear Arctic model for thousands of i3,
meters of depth. e

Turning to the modal solution of the wave equation, we first write the vertical e
Helmbholtz equation, bt

%ﬂ +[k3(1 - az) = x2]Z(2) = 0 (2.65)

where xo = = and x, is the horizontal wavenumber. By introducing the change of i
variables
1 )
ax3 <
wo = ¥(x} - x3) W

X

2
w wy + -, :‘”

where X is the characteristic waveguide thickness, Eq. (2.65) reduces to the Airy

equation
2Z(w

oY dw?

= wZ(w). (2.66)
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The Airy functions Ai(w) and Bi(w) are solutions to Eq. (2.66). Retaining only the
Ai(w) solution for which Ai(w) — 0 as w — oo, and imposing a pressure release
boundary condition Ai(wp) = O at the surface, we obtain the normal modes by
finding the zeroes of the Airy function Ai at 2 =0, i.e.

wo=—-ys n=123.. (2.67)

where y; = 2.338, y2 = 4.088, etc[45]. The modal eigenvalue is then

Y
=kl )T'; (2.68)
To include the effects of boundary roughness, we require that the pressure release I ‘:‘.Ig;;
AN
boundary condition be met not at w = wy, but rather at w = wy — ﬁ, i.e. '::E:,E:::
Rty
. I‘:_
Zn(wo - ',67) =0. (2.69) ‘&3:"
S
This requirement leads to the modified eigenvalue equation :E::E:::i:
R
®, \ J3
Kn = \/;3 g L % (2.70) "'2::‘3‘,:::‘
RS
= R+ (2.11) P
where R, is, as before, the undisturbed waveguide eigenvalue. For f < 1 (generally 5{*‘{ :
ey
a good assumption), we can do our usual expansion of the root and solve for the L
'.‘ l.'.“
eigenvalue variation up to second order ;E‘.:: :::é;
() g‘l'g @
2 2,422 DM
e(r,t) = “"if{,‘"" @ "og k(:l,tl)_ (2.72) E:::E:gtigg
. “ 4-. \]
For this case, \ ‘:\‘:.,:s‘:
= 250 e
Cin = 5= (2.73) it
2Rn t.::l?.:l.'.
and ": "::
a’r}
Cap = _W (2.74) w
S
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are the first power and second power coefficients of £ used in this thesis. As we did
for the ideal shallow water waveguide, we can compute the relative importance of

the bias and wander terms with the ratio

cané? - ¢

C[nf - &:X’ )

The larger the surface height, the larger the bias compared to the wander. However,

(2.75)

the effect of higher mode number on the ratio is harder to interpret. Since we are
using the ni-linear waveguide to approximate the Arctic for modes with turning
points removed from the bottom, the effect of the surface height change is much
less dependent on mode number for these modes. The mode just moves up and
down in the waveguide as the surface moves up and down.

The group siowness variation is, to second order

F¢n
Ash o (2.76)

awé w3l aPw3gl [ 3war
c3Rn 2R 2¢8R3 4R,

(2.77)

where )
= = (2.78)
coy/1~ H
is the unperturbed group slowness. The coefficients of £ and ¢? are

T [1 wig (2.79)

and
dzn = -

2.3 gr
a‘w [_3013,‘ . (2.80)

2¢8R3 4Ry
From Egs. (2.79) and (2.80), the scattered arrivals are seen to be retarded in arrival
time compared to modes traveling under a smooth sea surface. For this waveguide,
the ratio of the bias and wander terms is

dz»f’ ~
dlne

3

Y

(2.81)
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which is the same as the ratio for the phase. The wander is dominant over bias for z:',_ )
A
realistic frequencies, surface heights, and sound speed profiles. Y
Again, it is useful to consider two examples here. The rms wander and bias Q:
Wt
of the phase and travel time can be calculated for the example waveguides using i,\:f‘ ﬁ
¥l
Egs. (2.37), (2.39), (2.46) and (2.48). For a frequency of 220 Hz, surface correlation :*ﬁ!w
length of 100 m, rms surface height of 1 m, and range of 50 km, Tables 2.5 and 2.7 list S .:
the wander and bias estimates of the phase and travel time for 5 modes. Table 2.5 :
pertains to a waveguide with sound speed gradient b = .1 and ¢y = 1440 m/s, while .:.::a:,:::f
(O

Table 2.7 is for a waveguide with purely adiabatic sound speed gradient b = .016 b ,“..
* " (3

and ¢g = 1449.2 m/s. These values correspond to the gradients in the waveguide “':"
RO A
measured during the FRAM IV Experiment as shown in Fig. 2.5. Modes trapped e Y \

Batd

in the upper part of the duct see a gradient 4 = .1 while modes that turn in the Slo

lower region mostly see the adiabatic ,radient b = .016. Tables 2.6 and 2.8 list
the equivalent ray angle at the surface 0,0 and number of equivalent ray surface
bounces M. Tables 2.5 to 2.8 for the n3-linear waveguide give strikingly different
resuits than Tables 2.1 to 2.4 for the shallow water waveguide. The phase and
travel time bias and wander are pretty much independent of mode number for the
n3-linear waveguide. The equivalent ray angles increase with mode number for this

waveguide, but the number of bounces decrease by about the same factor as the

angles increase. Hence, the independence of the fluctuations with mode number.
Another way of stating the above is that the phase of the modes are very highly
correlated, as will be shown in Section 2.1.5. The other feature that is evident from
the tables is the much lower magnitude of the wander and bias compared with the
ideal shallow water waveguide. As we mentioned above, the bottom turning points
of all modes are in the water. The effect of moving the surface up or down just
moves the mode up or down in the waveguide, giving a very small change in the

local eigenvalue as evidenced in the tables. A rough sea surface affects modes the
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Tapn | (rad) | (Apn) (mrad) (A7) (us)
21 -1.2 15 -.08
.21 -1.2 15 -.08
21 -1.2 15 -.08
21 -1.2 .15 -.08
21 -1.2 .15 -.08

Table 2.5: Arctic waveguide wander and bias, b = .1 and ¢o = 1440 m/s.

Omo (deg) | M
46 |22
81 |16
7.1 14
79 |13
81 |12

Table 2.6: Arctic waveguide equivalent surface ray angles and number of bounces,
b=.1and ¢ = 1440 m/s.

most when the modes are trapped by the large sound speed discontinuity at the
bottom. Modes that turn in the water are less affected by the sea surface.

2.1.5 Cross-Coherence of Modes in the Arctic

In his Ph.D. thesis, Polcari[46] computed the cross-coherence matrix of the
acoustic normal modes measured in the FRAM IV experiment in the central Arc-
tic. In this section, we would like to show a straightforward application of our
theoretical Arctic waveguide results from Section 2.1.4 to explain the high cross-
coherence results Polcari found for the modes in this strongly surface scattering

Arctic waveguide.

ALe
A% M
< T,




N »,l‘c u'l‘

,t

s.p.l
Q" n'* KON

2 | Gags (rad) | (Bpa) (irad) | oar (ms) | (Ara) ()
1 .033 -3 02 -.02
11 034 -3 .02 -.02
21 034 -3 02 -.02
31 034 -3 .02 -.02
41 .034 -3 .02 -.02

Table 2.7: Arctic waveguide wander and bias, b = .016 and ¢o = 1449.2 m/s.

‘u .'o‘!'a. ¢

T,
5 "‘-\»
s".'

D | Oo (deg) | M
1 2.5 3
11| 6.1 3
21| 75 3
31| 86 3
41| 9.5 3

Table 2.8: Arctic waveguide equivalent surface ray angles and number of bounces,

b = .016 and ¢y = 1449.2 m/s.

l |‘.=‘..‘i
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The elements of the cross-coherence matrix are defined as
7 (A5
i = —————
v (14:1%)(| 451%)

where the i** normal mode is represented as A; = |A;|¢’?". Assuming that only the

(2.82)

phase ¢; of the mode is random, Eq. (2.82) becomes
T = (e0i®ily, (2.83)

The assumption that only the phase of a mode is random can be justified by
looking at Eq. (2.28). Note that a variation in a waveguide will affect three parts
of that equation. First, and least important, is the /Xm7 term in the denominator.
The eigenvalue fluctuations that are caused by a rough sea surface are generally less
than 1 %, giving a variation in this term, and hence, the amplitude, of less than
.1 %. The second effect of the rough surface is in the eigenfunctions Z,, evaluated
at the source and receiver. For a mode away from cutoff and mode nulls away from
source/receiver depths the variation in eigenfunction amplitude is also small for
reasonable surface wave heights and ocean depths. The third effect is in the spatial
phase term. Since the variation in phase depends on the integral of the eigenvalue
variation, even small variations in the surface height can have dramatic effects on
the phase.

We now assume as before that p; = @; — Ap; where Ap; is the small random

variation due to the rough surface. For Ap; < 1, we obtain that
Loan_1l.\ 2
|Tiil = 1 = 5(8¢5) - 5(Ag5) + (Apildp;) (2.84)

where we have assumed that (Ayp;) = 0.
In Section (2.1.4), we described the scattering in a waveguide with a n?-linear

sound speed profile characteristic of the Arctic. For this type of waveguide, Eq. (2.84)
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Figure 2.5: FRAM IV sound speed profile and bi-linear approximation

becomes R

Tl =1+ 3%@—‘[0;?“0;" - -;-(vf“ + oY) (2.85) 52’:1‘!3
where ¢ is the correlation length of the surface roughness{47] and S
- (2.86) Ko
V1= mim
is the unperturbed phase velocity of the i** mode. Eq. (2.85) thus becomes

mode __
0,.- =

aloiR¢(y + v
| Tl =1 - —4 8§l’ 13 (2.87)

The FRAM IV sound speed profile is shown in Fig. (2.5) along with a bilinear
approximation. Modes trapped entirely in the upper duct see a linear sound speed
profile with gradient of 0.1 s~? giving a = 1.4x10™4 in Eq. (2.87). Polcari computed
T;; at frequencies from 15— 30 Hz for a transmission range of 300 km finding typical

values for the cross-coherence of low modes of .99. Assuming a frequency of 30 Hz,
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o¢ = 2 m and ¢ = 40 m for the ice roughness and correlation distance, we obtain Mgty

from our formalism o,

’-
W Y

| Tha| = .99087 (2.88)

in very good agreement with Polcari’s data analysis. This result implies that the

modes turning at the surface wander together as the rough surface changes in time.

1
ol

We note that the theory employed above assumes a pressure-release rough surface, . ~
whereas the data was taken under a ice-covered surface — however, this is not
expected to significantly change the cross-coherence resuits calculated here. !'
There is another implication of the above result: even if modes are not resolvable, :{Eg'

(as is often the case at tomographic frequencies in the Arctic) we should be able %}3
to see a mode group wander due to the rough surface. The phase perturbations .:f:f
on adjacent modes are very nearly the same, so that the whole arrival pattern is e
rotated in phase and shifted in time. Using unresolved mode groups might enhance .:‘:E:?
the viability of the proposed technique for estimating sea surface wave spectra with 'EEE:E:
modes. .
&

'

2.1.6 Coupled Mode Effects et
-‘;:

If the acoustic waveguide boundaries are range dependent to a great enough ‘:E:
degree, the coupling coefficients Aps and B, given in Egs. (2.21) and (2.22) may “E:{
not be small. Since A, is proportional to the second derivative of the roughness “;
and Bpma, the first derivative, B,., is assumed to be much greater than A,.. We o
thus drop Ams from here on in this thesis. Most of this section is taken from a \‘
paper by Lynch, Miller, Chiu, and Frisk(47). N
We now assume that the modal pressure field is made up of two parts: an : ‘
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adiabatic part and a coupled part, i.e. iy

Pa=pRE + Y pi (2.89) P
mgn AT

where p%% is given by Eq. (2.25) and our goal in this section is to determine pio” o

due to a rough sea surface. ) ‘%:I:':::;:e

To include coupling effects, we begin by considering two Green’s functions, G P
and G°. The Green’s function G is taken to be the exact solution to Eq. (2.3), i.e. ,.,‘:.":?-q
including mode coupling efects. The Green's function G°, on the other hand, is ::"""::':%

L)
taken to be the adiabatic mode solution in our paper. (Of course, one can make R

'

any choice for G°. The choice of the adiabatic G* is attractive for physical reasons.) I

Mathematically, we can write this in quantum mechanical notation as{48]| {

-

il
2 LA L

- - Dy .
G'(2)=(z-H)" (2.90) i
G(z) = (3- H)™ (2.91)

where % is a complex energy (wavenumber squared), H° is the Hamiltonian for the

adiabatic “background” problem, and

’
o
-
W

H=H +V (2.92)

is the Hamiltonian in our “exact” problem. It is obvious from Eq. (2.92) that V' will
be the mode coupling potential (due to the rough surface) for our modal problem.
The equation relating G and G° is well known, and is called the resolvent equa-

tion or Lippmann-Schwinger equation for C-:‘(Z). It is
G(z) = G°(2) + C°(B)VG(3). (2.93)

A common tactic is to solve Eq. (2.93) iteratively, i.e. replace G(3) on the right

hand side of Eq, (2.93) by the full expression on the right hand side. Doing so, one
obtains the infinite series result

G(z) = G°(3) + G (3G (3) + G (R)VEC (VG (3) + -+ (2.94)

56
AN ;:'.\7“:-"."‘ LA 8,000 ' Ot Wty MtV " ) ‘{w* P r("‘(.; &.’\(.‘q’.'-f‘,'r..('.‘- ARSI TR R CRTIAN
et e it Kb B By 3 LN ...ll:“ﬁ\ 10 s, Ve ay " ¢ ) e Y
R AN ﬁ"’:’fﬂ";.‘;*.‘:«‘!*.".'M'.' ‘l‘zll. ) ‘:l:::"'::"t e v"fa:‘.\::fl,:ﬁ?::“.f‘ht",n. T AT A 4 IO S AT S P MR A AN AN



;.
=

LIS

s
Case)
-

'y
Vo M‘n‘ a.' u

This result is called the Born or multiple seattering series. It is an exact series
expansion solution to Eq. (2.3) in powers of the coupling potential V', but can only
be expected to converge rapidly when V is in some sense “weak”.
To obtain the coupling potential V', we again look at the coupled radial equa-
tions, which in reduced form are
Fo(r) + K2(r)Fu(r) = = 3_ 2BumFnlr) (2.95)
makn
It is obvious from the form of Eq. (2.95) that, if we had F,, instead of F,, on the
right hand side, then B,, would be the coupling potential V' for the Lippmann-
Schwinger equation. In order to get this form, one can replace F,, by its adiabatic
form and take the radial derivative. One obtains, using the WKB solution, that
o [ xmlr)ar
Buma = B [.__m } .

Using the (generally very good) approximation that 2x3(r) > ‘_“;_'(:l’ we write that

(2.96)

BrmFm 22 Bumim(r) Fm(r) (2.97)
which leads us to make the identification for the Lippman-Schwinger potential
Vam = Bnmifm. (2.98)

The coupling coefficient B, for rough surface scattering has been obtained
in a convenient form by McDaniel[49,50|, and for our z = 0 surface, we can just
paraphrase her resuits. For the air-water interface at z = 0, one obtains

a 2 [GZ,.. BZ.‘]

-— 2.99
drx3 ~xd | 9z 9z (2.99)

Bpa =

In Eq. (2.99), 55 is the local slope of the z = 0 boundary at a given range r, and
Zn and Z, are the values of the mode functions at z = 0 (which are non-zero due

to boundary scattering).
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We assume that the sound speed over a small depth near z = 0 is isovelocity so Nt

that we may write the vertical mode functions near z = 0 as(51] e,

\]
"' ": "
“ .?

Zn(z) = ansinYaz (2.100)

and therefore S

oz,
82'30

= Gu 7 (2.101) NS

Using the previous resuits, we can write an explicit form for the single forward el

scattering term of the series for the z = 0 scattering surface. It is S

_ Z..(z,R) il ..(r"w' (3
TR = =l [/ T~ ar

1

21

'(,cz__,cT)"""""“. fs" wmer g, ] Zm(2,,0). (2.102) ‘:::E{:::

The integrals in Eq. (2.102) are fairly easy to interpret physically. As shown

in Fig. 2.6, one starts out in mode m, propagates adiabatically to the scattering
W

surface, and then couples to mode n, after which adiabatic propagation to the R

receiver in mode n occurs. This process is integrated over the entire scattering
surface.

ALK
If we also make the approximation that the vertical and horizontal wavenumbers RN ":ﬁ
in the Eq. (2.102) integrals can be replaced by their background wavenumbers, i.e.
Kn(r) = ko and 4a(r) = 74, Eq. (2.102) becomes i -

", u
Yy
8, A
Loyt

-+

" %
Ay
Talaenl
oSSty

Zn(2,R) 21KmBnTnGmTm oY
coupl — ina R R
TR = TR L o) X

[ /t; " ei(Am—nn)ry __di(:) dry| Zm(2,,0). (2.103)
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Figure 2.6: Schematic of coupled mode scattering

2.1.7 Coupled Mode Bragg Scattering

The single scattered coupling integral in square brackets in Eq. (2.103), which
we denoted by 7, can be written as

Inm = % /o di(r:‘) ¢~ marmirigp,, (2.104)

Equation (2.104) can be interpreted as a Fourier transform (between range 0 and
range R) of §{(r,) evaluated at the spatial difference frequency (xn—xm). As we shall
see by examining the case of a sinusoidal rough surface, if the surface contributes
a wavenumber to the scattered field which is just equal to the difference between
modal wavenumbers, the coupled scattering is resonant, an effect commonly called
“Bragg Scattering.”(48].

Let us assume first that the surface height is

§(r1) = & sin(Kr | (2.105)
where K = 2x /)’ is the spatial wavenumber of the sinusoidal rough surface. Sub-
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stituting this into Eq. (2.104) and performing the integrations, one obtains

Inm = SK {sinc [—-——"'" —= K R] P G e L
+sinc [K'"—-';Lﬂli] e‘(znﬂf-i)g}. (2.106)
Denoting the mode cycle distance for modes m,n by
2x
= 2.107
Apm Pap— ( )

we see that the amplitude of I in Eq. (2.106) is greatest when A, = \* which
is the Bragg scattering condition for the rough surface. When this condition is
met, I has an amplitude of approximately K¢, R/2, i.e. the scattered pressure
integral increases in direct proportion to range. Away from resonance, the R in the

denominator of the sinc(z) term comes into play giving

I"""-'z( Iff’ :)sin[("""‘z"""x)k], (2.108)

i.e. the range dependence is sinusoidal and always lower in amplitude than at reso-
nance.

We can calculate the arrival time of the Bragg scattered coupled energy with
a stationary phase analysis of the phase of I given in Eq. (2.106). For a resonant
interaction, i.e. kn —£m = £ K, the phase of I is just 2atsm R, The stationary phase
method of computing arrival time involves a derivative of phase with respect to
w. Therefore, the Bragg scattered energy arrives midway between the transmitted
mode and the received mode arrival times.

We look at this for an ideal hard bottom waveguide example. The example
waveguide is 180 m deep with 50 Hz source and receiver located 50 km apart,
both at the bottom. There are 12 propagating modes at this frequency in this
waveguide. The eigenvalues for this waveguide are listed in Table 2.9. In Fig. 2.7,
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MODE NUMBER | EIGENVALUE
0.209258
0.207797
0.204844
0.200333
0.194156
0.186146
0.176053
0.163494
0.147839
0.127958
0.101394
0.059827

RBEhEBbOo®maaoewo -

Table 2.9: Mode eigenvalues for 180 m ideal waveguide at 50 Hz.

the coupled pressure magnitudes are plotted for a .424 m amplitude surface wave
with wavenumber K = x; — x5. The wavelength of the surface wave that resonates
with modes 1 and 5 is about 416 m, i.e. A; 5, the mode cycle distance for modes 1
and 5. The pressure amplitude values have been normalized with respect to pi%s.
Note in Fig. 2.7 that the coupled pressure given by Eq. (2.103) shows the greatest
coupling into mode 1 from mode 5, where the eigenvalue difference meets the Bragg
condition. Also note the amplitude of the coupled pressure is on the order of the
mode 1 adiabatic pressure amplitude, calling into question the convergence of the
Born series for this case. However, as we show later, a realistic sea surface spectrum
scatters much less than the monochromatic sea.

We list the coupled pressures for all 12 modes for the waveguide described above
in Tables 2.10 through 2.13. The mode 1-5 resonance is evident in Table 2.10. The
arrival times are referenced to the arrival of the adiabatic mode 1. The arrival time
of the Bragg scattered coupled modes (1,5) is midway between the arrival time of the

two modes, as we calculated above. In addition, modes 8 and 9 are almost resonant
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Figure 2.7: Coupled mode pressure amplitude into mode 1 for resonant Bragg
scattering, for a .424 m amplitude surface wave with wavenumber equal x; —x5. The
pressure values have been normalized with respect to pi%®. The ideal waveguide
is 180 m deep with 50 Hx source and receiver located 50 km apart, both at the
bottom. There are 12 propagating modes at this frequency in this waveguide.

62

al g .

...,

,p,'ﬂ"gai',_.’lqd ¢! ""'ﬁ' OS] P ” > 0 }-v-\q‘.‘\“. >p ", e s ’
Wt e i b gk 'I'.‘l'4 IRt S o Rt DA ~ W\, W 0 '\. Y
Tt m?‘-"‘.*'f:':‘a’f A:.';?A’:‘t’a’ .": Mt s, :.‘l:: l" ::" n,l’:el, LA ".l‘u'«. AL N, AL SR

A ()
X 008, 0, Yy 4t



R R XA I T N N N N N N N N N N N TN PR U RN N N NN U A SN T N W s
FTIOYRIY 2 » ||.

with the surface wave as seen in Table 2.12 because Agg = 401 m, nearly the surface
wavelength of 416 m. The arrival times of the (8,9) pair are almost midway between
modes 8 and 9. For the off resonant arrivals, the arrival time interpretations are
more difficult. Moreover, the slightly negative arrival times of (2,1) and (3,1) are,
most likely, numerical artifacts of the stationary phase calculation on very low

amplitude coupled arrivals.
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T]J | MAGNITUDE | PHASE (deg) | TIME (sec) e,
11 1.000 A 0.000000E+00 RS
1{2 | 0.6569E-03 -19.1 0.332548 e
1{3 | 0.4398E-03 149.6 0.834960 B
1|4 | 0.5778E-03 -40.4 1.19780 Gt
1|5 0.1496 135.7 1.29735 L
1{6 | 0.4368E-03 135.9 1.22842 R
1|7 | 0.2115E-03 -43.0 1.07142 b 8
1|8 | 0.1372E-03 137.1 0.892193 A
1{9 | 09811E-04 -44.4 0.727745 R
110 0.7140E-04 131.9 0.592124 Ny
1{11]| 0.4913E-04 -54.4 0.481649 SRR
1[12| 0.2551E-04 113.9 0.389068
2|1 | 0.6638E-03 -50.3 -.980118E-01 R
2|2 1.004 | -1472 0.234536 G
2|3 | 0.1748E-02 110.2 0.836540 R
2|4 | 0.1602E-02 -82.9 1.35511 R
2|5 | 0.7566E-02 91.1 1.52817 il
2|6 | 0.1647E-02 90.8 1.48281 St
2|7 | 0.6060E-03 -88.0 1.32822 e
2|8 | 0.4349E-03 92.3 114409 b
2|9 | 0.3060E-03 -89.1 0.976247 ?2!:-.,:\
2|10| 0.2206E-03 87.3 0.835844 L
2|11| 0.1509E-03 -99.0 0.720829 At
2|12| 0.7806E-04 69.4 1.14194 pRarRI
31 | 0.4540E-03 -38.4 -.116120 A
3 0.1786E-02 136.2 0.116835 IR

3|3 1.011 33.5 0.718840 b
3|4 | 0.3082E-02 -75.0 1.57026 | R
3|5 | 0.4635E-02 93.5 1.97194 ey
3|6 | 0.5229E-02 01.2 1.99872 g
3|7 | 0.1448E-02 -87.6 1.86019 iy
3|8 | 0.8194E-03 93.0 1.66812 '
3|9 | 0.5529E-03 -88.1 1.48720 e
3|10| 0.3005E-03 88.6 1.33804 PRy
3|11 0.2640E-03 -97.5 1.21576 rahy
3|12| 0.1355E-03 71.0 1.11609 e
Table 2.10: Coupled pressure magnitude, phase and arrival time for modes 1-3. N
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at ] ':..:'.:-::
the bottom. Surface wave is .424 m ampé‘i‘tude with wavenumber equal to «; — «s. :‘ "‘::E
SRR
o

OO KN OelING (N Cah I Cd » o N - g . AR T [N Y
LSRR ?‘*i-*22:2&5551’3:!E‘éf‘:ﬁi‘:ﬁ!:-"ﬂ".:"::s::é- TR s A e u.ﬁ*ﬁ’




I]|J | MAGNITUDE | PHASE (deg) | TIME (sec)
4|1 0.6168E-03 -171.1 0.288437
4|2 0.1692E-02 6.5 0.365668
43 0.3186E-02 179.3 -4999.37
404 1.022 70.8 1.48624
45 0.4940E-02 -42.3 2.51305
416 0.3344E-01 128.9 2.78208
4|7 0.3181E-02 129.1 2.69828
48 0.1422E-02 -49.8 2.50117
4|9 0.8858E-03 129.7 2.29965
410! 0.6025E-03 -53.2 2.13135
4 11| 0.3989E-03 120.9 2.00185
4|12 0.2021E-03 -70.4 1.88894
5|1 0.1673 -44.3 1.29767
52 0.8378E-02 135.3 1.30138
53 0.5023E-02 -46.4 1.34192
5(4 0.5178E-02 126.6 1.56821
5(8 1.038 13.6 2.59502
5|6 0.8052E-02 -103.2 3.75160
5|7 0.1394E-01 -108.7 3.88006
5|8 0.2669E-02 72.6 3.70654
5|9 0.1406E-02 -107.0 3.47967
5 0.8946E-03 70.7 3.28531
5 0.5723E-03 .114.8 3.13273
5 0.2842E-03 54.2 3.01115
6 0.5207E-03 48.7 2.91386
6 0.1943E-02 -131.1 2.89400
6 0.6036E-02 49.1 2.86239
6 0.3734E-01 48.7 2.84644
6 0.8577TE-02 -136.3 2.98569
6 1.060 106.9 4.14227
6 0.1399E-01 -12.6 5.37901
6 0.7383E-02 -15.0 5.37768
6 0.2419E-02 166.4 5.13494
6 0.1350E-02 -14.8 4.90071
6 0.8149E-03 160.3 4.71537
6 0.3921E-03 -30.3 4.57471

Table 2.11: Coupled pressure magnitude, phase and arrival time for modes 4-6.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave is .424 m ampelistude with wavenumber equal to x; — xs.
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T]J | MAGNITUDE | PHASE (deg) | TIME (sec) "2?'
7]1 | 0.2741E-03 115.3 5.22080 "5«"-
7(2 | 0.8924E-03 -64.6 5.19854 ecre
7|3 | 0.1818E-02 115.7 5.15088 RN
7|4 0.3861E-02 -63.7 5.08019 g‘,.:';".}_.
715 | 0.1614E-01 116.9 5.00718 )
706 | 0.1521E-01 114.0 5.05548 R
7|7 1.090 5.4 6.29222 LE
7|8 | 0.3411E-01 -126.7 7.57678 i
7|9 0.5471E-02 -126.6 7.44195 WY
710 0.2198E-02 53.9 7.15529 o]
7|11| 0.1192E-02 -129.8 6.92267 N
7(12| 0.5451E-03 40.2 6.75378 Sy
81 | 0.1987E-03 -46.1 8.44634 R
82 | 0.6232E-03 133.9 8.42898 S
8|3 | 0.1149E-02 -46.2 8.38925 st
8|4 | 0.1920E-02 133.8 8.32360 LD
8!5 | 0.3454E-02 -45.7 8.22701 -
8|6 | 0.8069E-02 135.2 8.10313 X
8|7 | 0.3812E-01 134.6 8.05398 .,._
8|s 1.131 13.3 9.33853 RN
8o 0.1727 71.1 10.6353 R
8|10| 0.4442E-02 -107.3 10.3729 —
8|11| 0.1876E-02 71.1 10.0603 AT
8|12 | 0.7836E-03 -117.8 9.83403 PO 3
9|1 | 0.1652E-03 -72.7 13.1325 Nodeu
9|2 0.5098E-03 107.1 13.1185 by
9|3 | 0.9019E-03 -73.3 13.0018 )
9|4 | 0.1397E-02 106.2 13.0468 Ry
9|5 | 0.2116E-02 -74.2 12.9756 b .:'S;;
9|6 | 0.3418E-02 105.7 12.8675 e
9|7 | 0.7110E-02 -73.6 12.7105 ottoily
9|8 0.2008 107.3 12.5634
9|9 1.190 165.2 13.8602
9|10 0.2631E-01 -137.0 15.1291
9|11| 0.3524E-02 44.5 14.7429
9|12 0.1210E-02 -142.1 14.4185

Table 2.12: Coupled pressure magnitude, phase and arrival time for modes 7-9.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface wave is .424 m a.mpslistude with wavenumber equal to x; — xg.
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The actual ocean surface is much more complicated than a single sinusoidal
wave propagating in one direction. A realistic sea surface is made up of a sum
of many different frequency sinusoidal waves travelling in different directions, each
with a random phase. This sum is called the frequency-direction spectrum F((1, )
where (1 is the radian frequeﬁcy of the wave and a is the direction the wave is
travelling. The wavenumber of the surface wave K is related to the frequency 0 by
the appropriate dispersion relation. Here, we assume deep water waves with (1? =
gK. The frequency-direction spectrum is discussed in greater detail in Chapter 3.

Here, as another example, we show the effect of coupling on a more complicated

surface made up of four sinusoids or

€(r) = i & sin(Kiry + ¢) (2.109)

=1
where ¢; are random phases and we will assume that all £ = .15 so that the rms

roughness of the sea surface remains that for the previous example. Now, we assume

that

K = kvyi — ks (2.110)

We list the coupled pressures for all 12 modes for the waveguide under the more
complicated sea in Tables 2.14 through 2.17. The mode 1-5, 2-6, and 3-7 resonances
are evident in Tabie 2.14. The mode 4-8 resonance is shown in Table 2.15. Because
the sea surface energy (variance) is now spread between four waves, the coupling
amplitude is generally lower as we note for the 1-5 resonance in Table 2.14. All the
resonant pairs, (1-5), 2-6), (3-7), and (4-8), have high coupled energy and arrive at
times about halfway between the sender and reciever mode arrival times. However,
the coupling amplitude at higher mode numbers is greater than that at lower mode
number. The effect is caused by the higher vertical eigenvalues at higher mode
number in Eq. 2.103. A more physical interpretation of this is that the equivalent
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[T [J [MAGNITUDE | PHASE (deg] | B
101 | 0.1493E-03 35.8
102 | 0.4564E-03 -144.5 ™
103 | 0.7910E-03 34.9 ks,
10 | 4 0.1180E-02 -146.0 i
10|5 | 0.1672E-02 329 e,
10{6 | 0.2368E-02 -148.3 KRR
107 | 0.3547E-02 30.7 Ty
10{8 | 0.6416E-02 -149.4 o
109 | 0.3267E-01 32.2 e
10|10 1.279 90.0 P
10{11| 0.1302E-01 148.6
10 [ 12| 0.2180E-02 -33.2 o
111 | 0.1457E-08 83.4 el
1112 | 0.4426E-03 -96.9 o
11|3 | 0.7580E-03 82.3 NI
114 | 0.1108E-02 -98.8 e
11|5 | 0.1516E-02 7.7 :
116 | 0.2027E-02 -102.2 e
11{7 | 0.27272-02 8.7 o
118 | 0.3340E-02 -108.5 s
11|9 | 0.6204E-02 ne
11| 10| 0.1845E-01 -107.3 s
1111 1.437 -48.7 35.4907 rst;;;-q :
11|12| 0.6215E-02 10.8 36.4308 AR
13|1 | 0.1600E-03 9.0 $2.9408 | ,h;;
12/2 | 0.5083E-03 170.6 82.4223 (A
12|3 | 0.8588E-03 -10.3 $2.9324
12|4 | 0.12382-02 168.4 832.9270 e
12(8 | o0.1661L-02 -13.4 82.913¢ i
12|6 | 0.2152E-03 164.3 82.0073 TN
12(7 | 0.2752E-02 -18.4 82.9881 SN
12|8 | 0.3540E-02 158.3 832.8342 e
12(9 | 0.4701E-02 -35.6 82.7113 R
1210| 0.6819E-02 150.4 82.6544 o
12(11| 0.1371E-01 -32.4 82.3838 e
12| 12 1.870 7.3 83.3207 e

Table 2.13: Coupled pressure magnitude, phase and arrival time for modes 10-12. o
Waveguide is 100 m desp with a 50 Hs source and receiver located 50 km apart at ‘;:,:::.;{
the bottom. Snrham’-.dﬁnu.p&hhwithmbcmdmn-n. .‘;;:;n*:“:
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rays for these higher modes are bouncing off the rough surface more often per unit ey

range, and therefore, the coupling into other modes is higher.
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KNS
e
| e
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| B
| T]J [MAGNITUDE | PHASE (deg) | TIME (sec) i
1 1[1 1.000 1.9 0.000000E-+00 (RN
1{2 | 04170E-03 172.3 0.481027E-01 o
| 1/3 | 0.2387E-03 1.9 0.117424 s
| 1/4 | 0.2007E-03 -154.3 0.647988E-01 R
1|5 | 0.5264E-01 112.7 1.30291 )
1|6 | 0.1197E-02 -12.6 1.96671 S
1|7 | 0.7353E-03 -167.7 3.26363 "
1{8 | 0.7704E-04 -140.1 6.31447 e
19 | 0.1468E-04 66.0 10.5392 il
1|10| 05777E-05 -95.4 12.6828 .
1|11| 0.2772E-05 95.7 12.6077 e
f1{12]| 0.1103E-05 -79.0 11.0153 3
2|1 | 0.4214E-03 118.3 0.186433 o
2|2 1.004 -147.2 0.234536 ke
2|3 | 0.1047E-02 -48.3 0.321410 PR
2|4 | 0.6578E-03 150.7 0.346191 i
2|5 | 0.2094E-02 45.7 0.978093 C )
2|6 0.1744 116.8 2.19323 ot
2|7 | 0.2284E-02 144.0 3.30643 e
2|8 | 0.3054E-03 172.2 6.13228 Reand
2|9 | 0.4938E-04 19.1 10.4594 i
2|10| 0.1841E-04 -141.3 12.8353 L
2|11| 0.8627E-05 50.5 12.8781 N
2|12 | 0.3396E-05 -124.0 11.2454 'g;;.'::»:*':
3|1 | 0.2465E-03 109.4 (.601415 et
3 0.1070E-02 -65.4 0.631965 s
DO
3|3 1.011 33.5 0.718840 -
3|4 | O0.1657E-02 138.1 0.838206 RO
3|5 | 0.1328E-02 -1.4 0.744470 R
3|6 | 0.5788E-02 103.2 2.58104 e
3|7 0.3802 -43.5 3.51100 :'.;2:::5:;‘,;
38 | o0.111E-02 166.5 5.75284 -
3|9 | o0.1052E-03 15.6 10.2817 RN
3{10| 0.3476E-04 -142.7 13.1819 ’ ’ti
3(11| 0.1555E-04 50.3 13.4457 e
3|12 | 0.5079E-05 -123.4 11.9344 e
Table 2.14: Coupled pressure magnitude, phase and arrival time for modes 1-3. '_. LS
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at ,'-,.'-ﬁb"
the bottom. Surface has four sinusoidal ggmponenu. i_‘; N ;
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‘ [T]J [MAGNITUDE | PHASE (deg) | TIME (sec)
| 4|1 | 0.2142E-03 -57.2 1.42144
4/2 | 0.6940E-03 132.9 1.37459
4|3 | 0.1713E-02 -33.9 1.36687
4|4 1.022 70.8 1.48624
415 | 0.2304E-02 -177.8 1.61374
4|6 | 0.9923E-02 92.2 2.45061
4|7 | 0.4678E-02 -15.5 3.39743
4|8 0.5928 -166.2 5.41437
4|9 | 0.2335E-03 -134.4 9.84208
4|10 0.6026E-04 70.8 13.5888
411 0.2470E-04 -93.9 14.2813
4112 0.9121E-05 93.6 12.8461
5|1 | 0.5890E-01 -21.4 1.29211
512 | 0.2319E-02 -179.2 1.85146
5|3 | 0.1440E-02 48.5 2.56939
5(4 | 0.2415E-02 -97.8 2.46752
5|5 1.038 13.6 2.59502
5(6 | 0.3088E-02 135.3 2.69027
5(7 | 0.1201E-01 -100.8 4.41831
5/8 | 0.1002E-01 -58.1 5.53758
5(9 | 0.7207E-03 -23.0 9.10100
5(10| 0.1093E-03 -172.4 13.9640
5{11| 0.3831E-04 26.5 15.4455
5(12| 0.1325E-04 -144.1 14.2423
8|1 0.1427E-02 -162.8 2.17556
6 0.2057 -157.1 2.18358
6(3 | 0.6682E-02 37.1 2.28007
6|4 | 0.1108E-01 85.5 3.17791
6|5 | 0.3280E-02 -14.8 4.04703
6|6 1.060 106.9 4.14227
6|7 | 0.4280E-02 -115.0 4.17085
6(8 | 0.3070E-01 -165.3 6.11176
6|9 | 0.1204E-01 -126.7 8.40761
6|10| 0.2400E-03 90.6 13.9814
6|11 | 0.6186E-04 -64.2 16.9298
6|12 | 0.1919E-04 128.3 16.1195

Table 2.15: Coupled pressure magnitude, phase and arrival time for modes 4-6.
Waveguide is 180 m deep with a 50 Hz source and receiver located 50 km apart at
the bottom. Surface has four sinusoidal ggmponents.
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I[J | MAGNITUDE | PHASE (deg) | TIME (sec no
7|1 0.9528E-03 -120.0 3.02860 N0
7(2 | 0.2929E-02 63.4 3.22032 e
7|3 0.4772 71.6 3.50006 L
7|4 | 0.5678E-02 80.9 4.38104 W
7|5 | 0.1391E-01 109.0 4.46893 eh
7(6 | 0.4653E-02 -143.5 6.26364 Pl
7|7 1.090 -5.4 6.29222 )
7{8 | 0.8817E-02 167.6 6.59116 T
7{9 | 0.2910E-01 -84.1 9.05431 L
7|10| 0.8979E-03 141.4 13.3362 NS
7|11] 0.1121E-03 -3.4 18.5965 DN
712 0.2864E-04 -165.5 18.6037 wrdl
18f{1 | o.1116E-03 -128.8 3.02406 P}
‘ 8|2 | 04376E-03 54.0 3.44079 WS
| 8|3 | 0.1558E-02 -119.7 4.30454 'f "
; 8|4 0.8040 -109.7 5.41040 AN
| 8!5 | 0.1207E-01 85.0 6.39597 _—
| 8|6 | o0.3729E-01 -74.5 7.36904 S
| 18|7 | o.9852E-02 -159.6 9.03960 43
| 8|8 1.131 13.3 9.33853 R
| 8|9 | 0.7076E-01 $6.6 10.8237 R
8|10 0.3278E-01 133.4 13.0127 -
8|11| 0.2725E-03 -177.6 20.0029 o
8|12 0.4605E-04 30.2 22.0719 A
91 | 0.2473E-04 176.9 3.32008 AR
9(2 | 0.8229E-04 -1.1 3.63531 DA
9(3 | o0.1716E-03 -176.9 4.20732
9|4 | o0.3683E-03 10.4 5.50346 Bodsa,
9|5 | 0.1085E-02 -158.2 7.35423 R
9|6 | 0.1701E-01 38.8 9.50486 232039
9|7 | 0.3782E-01 -116.1 11.0981 Yoo
98 | 0.8229E-01 1219 12.3751 — -
9|9 1.190 165.2 13.8602 N
9|10| 0.5186E-01 -118.8 15.7719 e
9|11| 0.1775E-02 128.8 20.4023 b
912 | 0.8697E-04 -4.2 26.7099 N
Table 2.16: Coupled pressure magnitude, phase and arrival time for modes 7-9. N
Waveguide is 180 m deep with a 50 Hs source and receiver located 50 km apart at "t:,. 0
the bottom. Surface wave has four simnﬂdal components. 2 .,::.\
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2.1.8 Coupling Strength

To roughly estimate the importance of coupling (or, in other words, the con-
vergence properties of the Born series for the Bragg scattering by the surface), we

compute the ratio of amplitudes of typical coupled pressure terms to the adiabatic

pressure
S = ﬁ,——%:—% = onTntnta 7 KR —‘Z—"T‘f% . (zaw)

Of course, this ignores any phase interference effect but the order of magnitude of
the ratio is indicative of the coupling strengths. Since K = x, — x» at the Bragg
condition, and a, ~ \/2/(pH), the ratio becomes

Zm(20,0)

M('a R)' - 2% In  Km
Zn(2,0) |

|psdied(2,R)|  pH Ku+Km

Sam = &R

(2.112)

The series converges best for low mode numbers and deep waveguides as we wouid
expect. Also, as range R increases, the coupling increases giving a range limit to the
adiabatic approximation. One also sees that modes which start with little adiabatic
energy, ¢.g. with a null of the mode near the source depth, are very susceptabie to
coupling from other modes.

We can calculate Spm for our example wavguide from the previous section, with
a depth of 180 m, 50 Hs source with a receiver located 50 km. The ratios depend
on the depth of the source and reciever. We assume source and receiver depths
are the same. The sea surface amplitude is §o = .424 m. The resuits are shown
in Table 2.18 for the Si.. terms, and agres qualitatively well with the explicitly
calculated resuits from the previous section.
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I |J | MAGNITUDE | PHASE (deg) | TIME (sec)
10]1 0.1208E-04 -96.8 8.51440
102 | 0.3809E-04 84.2 8.59645
103 | 0.7040E-04 -93.8 8.73416
10{4 | 0.1180E-03 89.9 9.09472
10|5 | 0.2043E-03 -84.0 9.82822
10/6 | 0.4210E-03 106.2 11.3581
10(7 | 0.1449E-02 -56.8 14.1533
10(8 | 0.4734E-01 . -30.1 17.5231
10(9 | 0.6440E-01 14.0 19.2856
10 | 10 1.279 90.0 21.1972
10 (11| 0.1612E-02 31.6 1.89469
10| 12| 0.2490E-03 86.0 32.8346
111 | 0.8220E-05 -66.7 22.8830
11|2 | 0.2531E-04 113.6 22.8472
113 | 0.4466E-04 -65.5 22.7638
11{4 | 0.6859E-04 116.0 22.6956
11{(5 | 0.1015E-03 -61.6 22.6403
11|6 | 0.1539E-03 122.4 22.7032
117 | 0.2566E-03 -50.7 23.1865
1118 | 0.5579E-03 142.2 24.8264
119 | 0.3125E-02 -12.4 28.9487
11|10 0.2286E-02 9.7 54.7933
11|11 1.437 -48.7 35.4907
11 {12| 0.7874E-02 84.8 40.5937
121 | 0.7215E-08 -176.1 72.3144
1122 | 0.2198E-04 4.0 72.3188
[12]3 | o.3788E-04 -175.9 72.1141
12| 4 | 0.5589E-04 44 71.9698
12| 5 | 0.7749E-04 -175.2 71.6824
12|6 | 0.1083E-03 5.7 71.3528
12|7 | 0.1446E-03 -172.7 71.0182
12|8 | 0.2081E-03 10.3 70.5963
12|9 | 0.3378E-03 -163.5 70.4800
12 (10| 0.7789E-03 31.2 71.6923
12|11{ 0.1737E-01 -108.3 78.2268
12 | 12 1.870 27.2 83.3297

Table 2.17: Coupled pressure magnitude, phase and arrival time for modes 10-12.
Waveguide is 180 m desp with a 50 Hs source and receiver located 50 km apart at

the bottom. Surface has four sinusoidal §2mpomnta.
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m | S N
2 | 0.026814 e

3 | 0.044369 o)
4 | 0.0861417 Sl
! 5 | 0.077702 o
6 | 0.092895 sy
7 | 0.106553 i
8 | 0.118021 .1
9 | 0.126252 ey
¥ 10 | 0.129330 ol
v 11 | 0.122955 W
12 | 0.001733 Rl
ig Table 2.18: Coupling strengths into mode 1 for 180 m waveguide, frequency of ';.:;;
X 50 Hz, and range of 50 km. :::::’:f
‘ o::':;:‘
i

2.1.9 WKB Approximation Breakdown AL
'
An error in the WKB approximation can limit the accuracy of our method. We ‘.:itﬁi‘,«
QAN
can write the phase of a mode with coupling as :::7::5
'.'5“ .

aled
om(R) = pR(R) + 013 (R) (2.113) -
e

R \

o9 = [ () dr (2.114) e
: is the seroth order perturbation to the phase, what we described as the WKB RO
Ve

approximation. There is no first order perturbation. The second order phase per- :Ié:::%
¥ i‘«
turbation due to coupling is given by(52,53] ;,":f:*:‘
R 2 - &
o =1 [* 5 Bomlriemln) o, (2.115) e
2 o nyim ’cﬂl - ’c'l " ‘0: ..ls'
W JN G
and using the same assumptions as above, Eq. (2.115) becomes ::‘:::?

." »,

R(3c)? a2 yiatyix T
(2) 2/ A OmIm%n InSim 2.116 4

-1 (5) 0 £ TE 119
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1
For the WKB approximation to be valid, o2} « x. We make the approximation ‘:':‘;::‘3‘
(WL
that i

R(3¢\? e
/.: (‘aTl) df; = Rﬂ: (2.117) l': :l":‘\
where 0; is the rms slope of the sea surface. Thus we get that

2242 N
2 o adviaiyin, AN
o ~ 2Ro} E ﬁ (2.118) A

Evaluating the above expression for the ideal hard-bottom waveguide shown in *‘%:‘::Q
Fig. 2.4 for depths greater than 30 m, for a frequency of 220 Hz, and at a range e

less than 500 km, ©{3) < 10~2 for all modes. Therefore, the WKB mode phase 'm .
approximation is valid for our application. This result is not surprising because "‘ .ﬁt
this error is second-order in the ratio of sea surface height to depth. :'3'

2 02 Ray "

In Section 2.2.1, we review the equations for ray acoustics for a three dimen- )
sionally varying ocean. We review the derivation for the eikonal equation, which IR
governs the path geometry of the rays. We also review the transport equation which :'..v‘:::"",*
determines ray amplitude. These are the standard textbook derivations which may iR
be safely ignored by the reader familiar with them. Next, in Section 2.2.2, we look N “:'32?

(] . “ [
at the perturbations to the ray travel time and phase fluctuations due to a rough ‘;."““t'-:‘
sea surface. The phase and travel time covariances are derived as functions of the ]

sea surface covariance, as we did for the modes. \ -‘t’.‘*
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2.2.1 Eikonal and Transport Equations %

Ray theory{54] also begins with the Helmholtz Eq. (2.3), which we rewrite here

for sound pressure p(7) at location 7 as
Vip+k(Fp=0 (2.119)

where ' C o

k(7) = T')- = kon(7), (2.120)

ko = w/co, co being the sound speed at some reference point and n(F) is the index

of refraction. We represent the sound pressure as

p(F) = A(F) 4 (2.121)

MRk

where A is the amplitude of the wave, koW is the phase of the ray, and W is referred
to as the eskonal. Substitution of Eq. (2.121) into the Helmholtz Eq. (2.119) yields

VA +iko(2VA - VW + AVIW) + k2 A[n? — (VW)?] = 0. (2.122)

The equations for ray theory are obtained from Eq. (2.122) when ko — oo (the
sound wavelength A = 27 /kqg — 0). Neglecting the first term in Eq. (2.122) and then

equating the real and imaginary parts separately to zero, we obtain two equations: %"
the eskonal equation :
(VW)? = n? (2.123) Pyt
.' \
and the transport equation
2VA-VW + AVIW =0. (2.124)
The eikonal equation (2.123) defines the geometry of the rays, i.e. the lines orthog-
onal to the wave fronts, with W = const. The transport equation determines the
amplitude. RN
XY,
sz;f\
(4 \ w.:
Sl 5" \‘ .)’\* "l' OY W D \ *.* "* \"\ } W v"n"' r N " ‘\}\ “:'-'}v}'\‘ '\*“.!‘
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We will be mainly interested in the eikonal equation, from which we get the ::.k"
phase and travel time of eigenrays. Eigenrays are defined as those ray paths starting Z‘g.'t b
from the source that intersect the receiver location{40]. The travel time of the m*® ’ e
eigenray is given by :.‘.
1 )
oy _ .
Tm = o g s (2.125) :.‘;:.,f‘_.;.'
where S,, defines the m'® eigenray path. The phase of the m'" eigenray is given by *h‘;z
‘I“ U
ray ray N
O = wr™ =k, '/s nds (2.126) A,
- vty .
These quantities can be computed using numerical ray trace programs(s5|. Ny
ot
ey
S "

2.2.2 Scattering of Rays from a Rough Surface

As shown in Fig. 2.8, a ray impinging on a rough surface will have two major .
differences from a ray impinging on a flat surface: 1) the ray will have an phase )
shift due to the surface elevation change, and 2) its direction will change according X
to the law of reflection. We can write the n‘* ray’s phase variation due to a surface :::' W

displacement £(ry,t,) as ﬁ}‘ ,

Apa(t1) = (2kosin b,,) z.: E(Pnx, t1) (2.127)

where 0, is the ray’s angle of incidence, ko is the acoustic wavenumber at the surface,
and we again assume a “frozen” surface during the time-of-flight of the ray. The :"
covariance of the phase variation in Eq. (2.127) is 'w

7Y (t) = (2kosinbn)? Y. D" Z(rimt) (2.128)
[ )

where now i = oy — Pam = (| = m)Ar, t =, — t3, Z(r,t) is again the space-time

covariance function of the sea surface, and Ar is the ray skip distance. Since the

\

SENPORE N SACHE ]
rd st gy
: N 4:‘:"". 3 ‘\:" l. g

1%, ¢
y R A
RN D B N RN R AR AT
., t.; ‘i‘r._hl 3.4 .D'. ,‘r)';,d'..' i l‘.i v 40 )

R )
]



.....

MEAN SEA HEIGHT

UNPERTURBED RAY i

PERTURBED RAY i

Figure 2.8: Ray reflected from rough surface

double sum in Eq. (2.128) depends only on the difference between ! and m, we can
rewrite Eq. (2.128) as

+M
927(¢) = (2kesindy)’ 3 (M —|m)Z(rm,t) (2.129)
wmm~A

where r,, = mAr. ‘5;‘_
The travel time and phase of a ray were shown above to be related by ¢ = wr N
30 the ray travel time fluctuation spectra can be written in an analogous manner }“Ei
to the phase, i.e. '
i ; ":1‘
vRY(t) = (2¢" sind,)* 2: (M = Im{)Z(rm,?) (2.130) ey
M 4y
where co is the sound speed at the ses surfacs. i
S
q'\"
RS Y
2.3 Summary of Scattering Results &!;
~ra
For both modes ana rays, we have related the covariance of the measured arrival _
TN
phase and travel time to the covariance of the sea surface. The equations below _'\‘;-':
A
4] :: {
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L)
summarize our findings. ‘:".f‘: !

Mode Phase Covariance !
+R "

o7(t) = b, [ (R Ir)Z(r,t) dr (2.131) Yo

Mode Travel Time Covariance e

+R ’

vt =dl, [ (R Ir)Z(r ) dr (2.132)

Ray Phase Covariance Ry

™ (t) = (2kosin 8,)’? %‘“(M- Im{) Z (e t) (2.133) &j'?:s‘::

Ray Travel Time Covariance PR

v (t) = (2¢5" sind,)? f (M = |m[) 2 (Fmst) (2.134) R

ma—M

Our ultimate goal is to determine the spectra of the sea surface from the mea- oy
sured acoustic phase or travel time spectra. Before we are able to reach that goal, . \% \
we review, in Chapter 3, the statistical and spectral description of a two dimen- \
sional random surface. One then takes a Fourier transform of the covariances shown -
above to reach the goal of predicting surface wave frequency-directional spectra. %,.&-
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e
Chapter 3 'zﬁ
)
Surface Wave Spectra - The Forward Problem .;
o
In Chapter 2, we showed that we could determine the acoustic phase or travel a2
time covariance given the sea surface covariance. In this chapter, the frequency- :: A
direction spectrum is shown to be related to the cross spectrum of the surface “.g
waves, i.e. the time Fourier transform of the sea surface covariance. Therefore, we {
can relate the spectra of our measurement to the sea surface spectra. EE:E':
Our measurement is assumed to be the travel time or phase of an acoustic é};i{:
arrival, either in a full wave formalism, i.e. modes, or in the geometrical optics :'h':'
approximation, i.e. rays. The continuous sampling of the surface by the acoustic :s A
mode and the discrete sampling of the surface by a ray have consequences in how :::: ’
we solve for the sea surface frequency-direction spectrum. In the mode case, we :{i
make an analogy to a continous antenna while for the rays, we make an analogy R
to a discrete array of wave sensors. In either case, we will show we can solve for Ea
the homogeneous (range-independent) and stationary (time-independent) spectrum 3 %‘
directly from the measured acoustic spectra. -
In 1984, MIZEX ‘84 (the Marginal Ice Zone Experiment, 1984) was performed E_:{
in the Greenland Sea off Spitzbergen. One part of that experiment was the trans- '>é'
mission of acoustic signals from a tomographic source and measurement of these N
signals at two different locations.[56] We apply the theory described here to signals "{-&
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R
N
measured at one of those locations. : :‘:'f
In this chapter, Section 3.1 reviews the spectral description of the sea surface. " :_Z:f~
Section 3.2 discusses the frequency-direction spectrum. Section 3.3 deals with mode b
phase and travel time spectra and their relation to the frequency-direction spectrum. o ',?:;::
Section 3.4 addresses the ray phase and travel time spectra. Section 3.5 describes the Ry
AT
results of MIZEX ‘84 that deal with surface wave tomography. Finally, Section 3.6 ,‘&A
quantifies the error incurred in the tomographic estimate of the frequency-direction ?\‘.35 ,-‘
A,
spectrum under the {rosen approximation assumption. ";;
»n
3.1 Surface Wave Spectra Review 5054
KRG
NN
In this section, we review the the statistical and spectral description of sea sur- ""' ‘
face waves following Phillips [18|. We will denote the random sea surface displace- el
'n  § *
ment away {rom the mean height by §(Z,t), a function of horisontal displacement ;:,b_. A
Z = (2,) and time to. ..f
The covariance of the zero-mean sea surface displacement fleld is " ~
o rom d' N
2@ 7t = [ [T a6aPle,6) s N
-» /-w N
= (£(Z.t){(Z + F.t0 + 1)) (3.138) ool
a0l
where the points 1,2 are taken as (Z,0),(Z + 7.t + t) respectively and P(§;,&;) » oo
NN
the joint probability distribution. This probability distribution ;'3& W
LI ,t;j
P&, &) d€, 46, (3.138) .‘~‘.‘"'
represents the probability that the surface displacements at the points (£,,t,) and ‘, o
AT
(£3,¢3) shouid jointly lie within assigned imits (£, £, ~d§,) and (&, & ~d&;). The '?':fi;
mean square surface displacement is m":
> .
2(2,0:it0,0) = [ €1P(61) 4, = o (3.137) T
:2.. {‘2:
" 28
’,#.".,
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If the wave field is homogeneous in space and stationary in time, the covariance is
independent of (2, t,).

The wave spectrum is the Fourier transform in the two spatial coordinates and
in time of the sea surface covariance Z (7,t), i.e.

X(R,0) = (TlrF [ [ [ 27 e e gras (3.138)

where the integration is over the horisontal 7-plane and over all time ¢t. The conju-
gate transform variables are spatial wavenumber vector X and temporal frequency
f1, respectively. Frequency and wavenumber are related by a dispersion relation
appropriate to infinitesimal linear gravity waves as (see (57| for a derivation)

N? = gK tanh KH (3.139)
where H is the depth of the ocean. If K H — oo, Eq. (3.139) reduces to
N =gK, (3.140)
the “desp water” approximation. When K H — 0, Eq. (3.139) becomes
N=,gHK, (3.141)
which is the classic, nondispersive, long-wave approximation.
The inverse relation for Eq. (3.138) is
2(%.0) = /// X(R.0)e™ 8= 4f 40 (3.142)
In particulas, the mean square surface displacement is also given by
o= f[[xindam (3.143)

Of much interest 1o this thesis is the cross-spectrum, which is the Fourier transform
in timme of the covariance betwesn sea surface displacements at points separated in
space by 7 ,
*w
- — J(F.1)e™ds. 3.144)
dr.n) = - /_. (7.0)e™ dt (3.1
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The two-sided frequency spectrum is a special case of the cross spectrum when :::’:.;',:.'j;

(X%
F=0,ie. e
- 1 p+oo ) ol
&) = — / Z(0,8)e™ dt. (3.145) R
2“ -00 Vo A,'.’\ 5

1\‘;"*‘-‘
RYEhEhY,
Since the frequency spectrum in Equation (3.145) is even, we can define the tradi- * J,;_'..
tional one-sided frequency spectrum as OO
o o
28(0) ifn>0 “
o(Q) = - (3.146) e
0 otherwise M
e
AL
The frequency spectrum, defined in Eq. (3.146), has been the object of study by .::":',':":l‘::i.
SDABA
many researchers because it is simple to measure: a point measurement in space Q:‘f:a.i:‘::?:
and a spectrum of the time series output of a pressure sensor, wave staff, or other e
instruments fulfill this purpose. ﬁ X0 «:
"

3.2 The Frequency-Direction Spectrum \?:"“,':
S
At this point, it is appropriate to review the frequency-direction spectrum "‘ o
F(N, a) which describes the directional and frequency distribution of wave energy. ) '::{:”::".::;
Section 3.2.1 reviews the frequency-direction spectrum and its general properties. &ﬁ::::::
In Section 3.2.2, s model is reviewsd which has been proposed by Donelan et al.[27] "M
for the frequency-direction spectrum. This model is used later in this thesis to oo
generate synthetic frequency-direction spectra. This spectrum is used to produce ':‘ "::':::%I
synthetic acoustic signal fluctuation spectra. The acoustic signal fluctuation spec- d‘{é':‘« EE:
trs are then tomographically “inverted” to reproduce the orignal underlying surface
wave spectra. LIRS
o
84 $ -:'":E:
N
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3.2.1 Spectrum Features R
The frequency-direction spectrum F(f}, a) is defined as LY

o0 - (WY

F(Q,a) =2 [o X(R,Q)K dK (3.147) N

where K = (K cos a, K sin a), 1 is radial frequency, and a is direction. When we ‘},{r
assume the linear deep water dispersion relation from Eq. (3.140), the frequency-

. direction spectrum is approximately S
o0 - ol
F(0,a) x 2 /o 5(K - 0%/g)X (R, 0)K dK. (3.148)

The frequency-direction spectrum, as the name implies, is a two-dimensional
“polar” spectrum. It can be interpreted as the distributions of o} among waves 3':‘;
with different frequencies {1 and directions a of propagation. The variance of the

sea surface is therefore related to the frequency-direction spectrum as M
L 3y ro® y

3 - .;:.'ﬂ

ol [o [o F(0, a) d da. (3.149) ot

If we assume the deep-water dispersion relation from Eq. (3.140), we can write Yo,

the cross spectrum in terms of the frequency-direction spectrum as N
2 Lt

¥7.0) = /o " F(0, a)e’(r/nsae 4q (3.150) %
where a is the angle measured from the perpendicular to 7 so that N
3, i

- K. 7 = Krsina= -—’-nina. (3.151)

We can also write the one-sided frequency spectrum (1) as a special case of N
Eqgs. (3.150) and (3.146) with ¥ = 0, i.e. -"Ml

- 14
*(N) = /o F(0,a) da (3.152)
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3.2.2 A Model Spectrum ,,::'.',’-
p ":tﬁ,t’
In a paper by Donelan, Hamilton, and Hui(27], a useful frequency-direction .
spectrum model for wind-generated surface waves was deduced from data obtained . ';i:«
A S
using a wave staff array in Lake Ontario. The frequency spectrum portion of the ;: d
3 N
model was essentially a correction of the JONSWAP model(24|, while a completely SN
new directional dependence was proposed based on the sech’ function. The model RE
l‘ ‘n‘ A,
is given as Z*::j'.*"'
1 e
F(0,a) = #(01)sech’ {8(a - a(n)]} (3.183) prrg
where & is the mean wave direction and t;,.;, y
2.‘1(&)4-!.1 0.58 < & < 0.98 :::E;;:'E.
B=1{ 228(f)"* o09<f <16 (3.184) S
1.24 otherwise 't'v 2,
RN
The frequency spectrum is given by ;;?_;:
o(N) = ng’n-* P_.-(?})‘,l‘ (3.183)
n’ tatags
.\u ::?.:1:
where (1, is the frequency of the spectral peak. The equilibrium range or rear face \ ‘:'.;':};'»
et
parameter n is given by : ;‘:‘,!,.‘.t,;
-
n = 0.008(%)0% 083 <tacs (3.156) -::.v.é
o N
The peak enhancement factor ¢ is given by . \:ﬂ.,:f.:
1.7 083< i < “
= g (3.157) ! ",‘:':3:
17+6logh 1<clhcs ‘s::a:,;.
. By 'a‘
P ot
while the peak enhancement exponent [ is given by e
gn-o.f' e
[=me »" (3.188) ::
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The peak width parameter o is
o = 0.08(1 +4(:]-l)'! (3.159)

where U, is the component of the average wind velocity 10 m above the mean surface
level in the mean direction of the waves at the peak of #(1), and ¢, s the phase
velocity of the waves at the peak of &(N).
The relationship between phase velocity ¢, and fetch is given by 27! as
g-’! =11.637°% (3.160)
where the non-dimensional fetch is # = 2¢9/U?. Using the desp water dispersion
relation, we can soive for the peak frequency as a function of fetch = as

N, = u.o[-;-r‘-". (3.161)

Although the above model seams complicated, it is easily generated on the com-
puter. Figure 3.1 shows a typical frequency-direction spectrum ia a contour piot
format for a wind speed of 10 m/s and a fetch of 90 km. A realisation of this
spectrum is shown in Fig. 3.2. Note that the waves are generally heading to the
right with the wind and that the correlation distance is much greater left-to-right
than top-to-bottom.

3.3 Mode Phase and Travel Time Spectra

We derived the equations relating the covariances of mode phase and travel
time to the sea surface covariance in Section 2.1.3 . In Section 3.1, we reviewed
the properties of the sea surface covariance. In particular, we discuseed the “crose-
spectrum”: the time Fourier transform of the sea surface space-time covariance. The
time Fourier transform of the mode phase and travel time covariances is simply the
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Figure 3.1: Typical frequency-direction spectrum. See Fig. 4.7 for grey scale. ; ::.-?,:*',

Figure 3.2: A realisation of a sea surface from a typical frequency-direction spec-
trum.
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power spectra of the measurements(58]. This section carries out the time Fourier
transform of the covariances, and using the properties of the cross-spectrum from
Section 3.1, derives equations relating measured phase and travel time power spectra
and sea surface frequency-direction spectra. Throughout this section we assume
a stationary and homogeneous frequency-direction spectrum for the sea surface.

Chapter 4 solves for the spatially dependent spectral problem.

Phase The time Fourier transform of the n** mode phase perturbation covariance

from Equation (2.36) is
om() =, [ ;R(R ~ r)B(r, ) dr (3.162)

where now ©™4¢((]) is the power spectrum of the nth mode phase perturbation
and &(r,N) is the cross-spectrum of the sea surface as defined in Equation (3.144).
Here we assume again that the surface waves obey the deep water dispersion relation
N1? = gK so that using Equation (3.150) in Equation (3.162) we get

N3Rsina

2y
@mde(Q)) = ¢} R? /; sinc? [ 7

] F(0,0) da (3.163)

where sinc’(z) = -’-'5—’ The mode phase spectrum ©™°9%(02) can be interpreted as
the output of an antenna with a triangular taper (or a Bartlett window [59]). The
signal in this case is the frequency-direction spectrum F ({2, a). The main lobe of the
antenna pattern is sensitive to waves coming from the direction perpendicular to the
mode path, i.e. at the zeroes of the operand of the sinc?. Note that waves coming
from a = 0 and a = 7 both give that same response. This left-right ambiguity is a
common feature of line antennae.

We can write the frequency-direction spectrum as

F(Q,a) = ®(Q)h(a;N) (3.164)
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Figure 3.3: Typical variation in directional dependence and kernel; R = 50 km, ::‘,i‘.:'f
N=.1Hs, a =0,and 8 = 2. N
where #((1) is defined in Eq. (3.146) and h(a; Q1) is the directional dependence of X
the spectrum with the property that [7* A(a;1) da = 1 for all . A reasonable :::.::',:;':
but simple model for h(a; ) for purely wind-driven seas (i.e. no swell from distant e
storms) has been found to be [27] o

h(a; Q) = g-sech’[ﬂ(a - a.)] (3.165)

where a, is the primary direction of the waves relative to the perpendicular to the e
mode path. J is a weak function of frequency {1, approximately equal to 2, and
given exactly by Eq. (3.154).

Equation (3.163) can be simplified by noting the characteristics of the sinc’ e
kernel and the typical directional dependence in Eq. (3.165). The sinc? term is . -
very small away from a = 0. The sech? term varying on a much slower scale Ny

around a = 0. Figure 3.3 shows the variation in the two terms. The variation A0

in the directional dependence of the spectra is barely noticeable while the kernel's

variation is confined to a very small region around a = 0. The consequence of this LAY
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is that the frequency-direction spectra can be assumed constant within the integral

in Eq. (3.163) so we can write

(3.166)

i N?Rsina
mode ~ ps D2 el
oTe(N) = ¢1,R*F(0,0) A sinc [—29 ] da.

At this point, we note that -"—:5 = KR > 1 for all reasonable wave frequencies
and acoustic transmission ranges so that we can approximate sin @ by a. Equation

(3.168) now becomes

N?Ra
mode(()) ~ 2 -2:3
o™d(q) ~ I RIF(0,0) (Q‘R) / a~*sin ( % ) da. (3.167)
The definite integral in Eq. (3.167) can be evaluated analytically as(60j
© .. ,[0Ra _Q*Rx
/-“ a “sin ( % da = 2 (3.168)
Therefore, Eq. (3.167) becomes
omode(QY) ~ 2"""'R’F(n 0). (3.169)

We now can solve directly for the frequency-direction spectrum at a direction per-
pendicular to the source/receiver heading. The left/right ambiguity is still present
in the problem but is suppressed for the moment.

Travel Time Taking the Fourier transform of the n‘* mode travel time pertur-

bation covariance from Equation (2.45) we get
R -
oo () = &, [ ; (R = |r()d(r, Q) dr. (3.170)

where T™9 ig the travel time fluctuation spectrum of mode n. We can write the
relationship between travel time spectra and surface wave spectra exactly like we

did for the phase, i.c.
2xd},Rg

TR(n) = =k

F(0,0). (3.171)
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3.4 Ray Perturbation Spectra

Upward refracted rays sample the sea surface at discrete locations along the path
from source to receiver (as contrasted to the continuously sampling modes). Instead
of using a continuous antenna as an analogy, we use a discrete array analogy for

the ray phase and travel time perturbation.

Phase Taking the Fourier transform of Equation (2.129), we get
M
O57(0) = (2kosinba)? > (M — |m|)d(ram, Q). (3.172)
m=—~M

With our usual assumption of the deep water dispersion relation 1? = g X and using

Equation (3.150), Equation (3.172) can be written

0™ () = (2kqsind,)? i (M - |ml) /; " F(Q,a)e 0 /n)armaina g0 (3 173)

mm-A
Using Equations (3.150) and (3.165) in Equation (3.173), and making the same
assumptions used to derive the mode phase perturbation spectrum in Eq. (3.169),

we get

(2k0o Sig:nA):Mz"g E F(0,a.) (3.174)

where a, = sin”![334]. Equation (3.174) can be interpreted as an output of an

array of sensors, each located at every ray surface bounce location. The sum in the

eyr(q) =

equation is due to the grating lobes that arise due to the periodicity of the array
response. However the grating lobe locations in angle are dependent on frequency
{l and the exact position of the ray bounces. In the frequency averaging done in
the spectrum estimation, only the central lobe is not averaged down, so that we
can use Equation (3.174) to solve for the sea surface spectrum in terms of the ray
phase perturbation spectrum

(2kqg sin 0,)2 M2xg

8."() = nar

F(0,0). (3.175)
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Also, ray bounce locations are seldom perfectly periodic in an actual experiment . Eﬂ;
due to bathymetry and other effects, eliminating the concern over grating lobes. E'.:‘: ’

Travel Time The travel time perturbations spectra of the rays can also be used ::E__ .
to determine the frequency-direction spectra at the direction perpendicular to the E‘{;
source/receiver heading. s
1. Stat

() = 2 ";:;): M2%9 r(0,0). (3.176) \:«:E

R

3.5 MIZEX ‘84 Tomography Experiment atel
RN

During the 1984 summer Marginal Ice Zone Experiment (MIZEX '84), a 224 Hz “}i
acoustic tomography source was deployed off Spitzbergen, Norway, in 1200 m of ::Ef-
water, sending out transmissions over the course of ten days (June 9-19, 1984). The _:.
material in this section is primarily from a paper by Lynch, Spindel, Chiu, Miller, -:.;S
and Birdsall[36]. o
The experiment was designed to 1) investigate the general characteristics of AN
acoustic propagation in the highly dynamic MIZ2 region, and 2) see if conditions were S:::
favorable for conducting large scale MIZ or Greenland Sea tomography experiments. \_\;’,
During the data analysis, it was noticed that the phase spectrum (or equivalently the E,:::‘..
travel time fluctuation spectra of surface interacting rays) exhibited a shape similiar N2
to that of the surface wave field. This suggested that surface wave tomography \:S:‘:
might be possibie, a previously unexplored possibility, and one which only could S‘i,:é
have been seen in the rapidly sampled data set. :
The source deployed in the experiment was a quarter-wavelength resonant tube :,‘,;:E
with a center frequency of 224 Hz and a bandwidth of approximately 12 Hz (which . l:::,'
gives a travel time resolution of 83 ms). It was moored at coordinates 78°59.3.V, J X
6°58.6E at 181 m depth in 1200 m of ocean. The mooring was tracked every 13 ‘;::;
93 -'-\‘
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min by three high frequency transponders moored near the bottm, so that any
movement of the source could be accounted for when analyzing the data. the signal
was a 63 digit phase encoded psuedorandom sequence which was repeated every
3.9375 seconds. This signal was designed to give large processing gain (~ 38 dB) to
an inherently low power system with bandwidth and peak power limitations, thus
making long distance tomography feasible{4|. During the experimental period, the
source was activated for a continuous two hour period, daily from 0000 GMT to
0200 GMT. In this thesis, we discuss two of the two hour transmissions, specifically
those beginning at 0000 on year day 168 and 169 corresponding to June 16 and
June 17, 1984.

The signals were recorded at two different locations, shown in Fig. 3.4. The
nearest sensor, deployed by the Naval Underwater Systems Center (NUSC), located
at T9°21.7.V, 8°31.42F, was 52.93 km distant along an ice-{ree path. (We are obliged
to Dr. Fred DiNapoli for the data set.) The further sensor, deployed by MIT and
Woods Hole (WHOI) and located at 80.405°.V, 8.38°E (at 0000Z, June 17), was
suspended at 60 m depth {rom the M, V Kuitbjorn. We will restrict our discussions
to the signals received by the NUSC array.

Oceanographically, the MIZ region west of Spitzbergen, through which the to-
mography transmissions were sent, is dominated by the warm West Spitzbergen
current flowing northwarr61]. This surface current heats the upper few hundred
meters of the water column, producing complicated sound speed profiles, such as
those measured at our source and receiver positions (Figs. 3.5 and 3.6). Beneath
about 600-800 m, the effects of hydrostatic pressure dominate the sound speed,
giving the usual deep ocean adiabatic gradient of 0.016 s~!.

The experiment was conducted on the Nansen Bank of the Yermak Plateay,
where the bathymetry governing the propagation between the source and the two

receivers was moderately shallow{62|. Figure 3.7 shows the bathymetry and the
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Figure 3.6: Sound velocity profile near the NUSC reciever.
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Figure 3.7: Range dependent ray trace between the WHOI source and the NUSC
receiver.

results of a ray trace program using sound speed profiles that were interpolated
between source and receiver. Between the source and the NUSC array, the slope is

more pronounced, going from 1200 to 180 m over 36 km. All rays received interacted

with the bottom and the sea surface a number of times.

The interaction of the rays with the sea surface had an effect on their phase
measured at the receiver., The phase for one of the rays is shown versus time from
0000 to 0200 GMT on day 168 in Fig. 3.8. The time series in that figure has two
features worth noting. First, a slow sinusoidal-like variation with a period of about
90 min is evident. This slow variation is believed to be an internal wave signature,
Second, on top of the siow variation, there is a very fast oscillation in the phase
of the ray arrival. The fast variations are believed to be due to surface waves.
Fig. 3.9 shows the power spectrum of the phase fluctuations where the two features
have their spectral counterparts: internal wave induced energy at frequencies less

than .01 Hz and energy due to surface waves between .08 Hz and the experimental
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Figure 3.8: Phase of the prominent arrival at NUSC receiver on day 168 with mean
subtracted out.

Nyquist frequency of about .125 Hz. Figures 3.10 and 3.11 show the same data for
the next day. The energy located in the .08 to .125 Hz band is greatly diminished on
day 169 as compared to day 168. To show this is due to surface waves, we estimate
the sea state in the vicinity of the NUSC array from wind force measurements.
On day 168, four foot (peak to peak) waves were estimated due to force 3 and
4 winds from the south and west (open fetch). On day 169, force 2 winds were
from the north (about 100 km fetch) followed by force 1 winds from the south,
giving less than one foot seas. The location (8-12 sec period) of energy in the phase
fluctuation spectra along with the sea state measurements on the two days provides

a convincing argument that the fluctuations are due to surface waves.

Applying Eq. (3.175) to the measured ray phase perturbation spectrum on two
days (168 and 169) gives the resuits shown in Figure (3.12). Note that the day 169
spectrum is essentially flat, indicating a calm day whereas the day 168 spectrum

has appreciable energy. The latter spectrum also shows a double peak perhaps due
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Figure 3.10: Phase of the prominent arrival at NUSC receiver on day 169 with mean
subtracted out.
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to aliasing or to two low frequency wave trains coming from different directions. ‘::5:::::
MM
Since we only have one source/receiver pair, we do not have much confidence in :::5;;5:::
the absolute vertical scale of Figure (3.12). However, the shape and location of the . .;. "
§
spectral energy resembles the general shape of sea surface wave spectra measured .';.'1:‘::.%
AR
by other workers.[27,63] T ;‘-?
oA
[ ® ..‘0"":e
3.6 The Frozen Approximation N '«,%;
' ),
NI
The frozen approximation consists of assuming the sea surface is not moving for o,f!-.;?::'.f
P
the time of flight of the acoustic ray or mode. Here, we quantify the error incurred ‘,;’.:‘,‘;s;.
. U
in the tomographic estimate of the frequency-direction spectrum under the frozen l:::::'.::}'-:
.' {3 &,
approximation assumption. :;:?.::E';g':
W4
As we showed earlier in this chapter, the acoustic phase and travel time pertur- _—
.I' i ol
bations are greatest for waves whose crests are parallel to our acoustic path for the %:E:;:::f
L
frozen surface. Mode n has a finite group velocity given by ';::E;:::'*‘
‘O.I‘Q,'.i‘f
aw ) \ )
mode
v = — 3.177 !
" Om (&7 sy
where w is the acoustic frequency and «, is the mode eigenvalue. The group velocity \ %ﬁ:&
i
of ray n can be represented by R
Vg = c8indy, (3.178)
where 0, is the angle of incidence. If the surface is moving, the direction of the
one surface wave (out of many in a direction spectrum), that the acoustic mode is
sensitive to, is that which satisfies
. Up
sina =~ (3.179)
g
where v, is the phase velocity of the surface wave and again a is measured from the
perpendicular to the source/receiver heading. The frozen approximation consists of
102
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Figure 3.13: Frequency-dependent bearing error due to the frozen approximation.
For a 180 m ideal waveguide, 220 Hz acoustic source frequency, and modes 1, 25,
and 50 out of the total 53 propagating modes.

letting vgn — oo, which “freezes” the surface for the time of flight of the mode or
ray.

For a finite group velocity v,,, the wave direction that perturbs the acoustic
phase and travel time the most is that whose wave crests just meet the acoustic
energy as it travels between source and receiver. That direction is slightly off the
perpendicular, and for deep water waves with dispersion 12 = gK, Eq. (3.179) is

given by
g
Numede

Figure 3.13 shows this frequency-dependent bearing error for a 180 m ideal hard

sina = (3.180)

bottom waveguide, 220 Hz acoustic source frequency. Modes 1, 25, and 50 out of
the total 53 propagating modes. Figure 3.13 tells us that for almost all propagating
modes and wave frequencies above .1 Hz, the error is less than 1 deg. The frozen

approximation is thus seen to be very adequate for our analyses.
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Chapter 4

Wave Spectra Estimation with Tomography

A major objective of this thesis is the estimation of sea surface wave spectra
from acoustic tomography measurements. Chapter 2 described the effects of the
rough sea surface on the tomographic signal. Chapter 3 showed how to derive
the spectrum of the signal fluctuations from the frequency-direction spectrum of
the sea surface, i.e. the forward problem. In this chapter, we address the inverse
problem. Given the fluctuations in the signals transmitted from a number of acous-
tic sources to a number of receivers, we solve for the quasi-homogeneous, quasi-
stationary frequency-direction spectrum of the sea surface waves that caused the
fluctuations. By quasi-homogeneous, we mean that the characteristic spatial scale
of the inhomogeniety is much greater than the longest wavelength of the surface
waves. The quasi-stationary assumption means that the spectra may evolve in time
on scales much longer than the longest wave period.

If the sea surface spectrum is homogeneous over the range of the transmission,
we showed in Section 3.3 that the sea surface frequency-direction spectrum is an
algebraic mapping of the mode phase or travel time pertubation spectrum measured;
the source-receiver pair measures the components of the frequency-direction spectra
in the direction perpendicular to the path in the (x,y) plane. In this chapter, we
solve the inverse problem for the spatially-varying frequency-direction spectrum

| 8,
vy At
R
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n
o
given the tomographic signal spectra. The inversion can be repeated over time to E;' A
195
retrieve time-evolving spectra. "::":'
M c‘.‘:
£
Inversions are performed on both mode and ray travel time spectra, simulated
. '"
in noise-free and noisy computer experiments. For a finite acoustic signal-to-noise .:' ':f
i
ratio, error exists in the acoustic travel time estimates. The noise is assumed to be :C
white and uncorrelated between transmissions. One of the features of the algebraic =
mapping from Section 3.3 was a multiplication of the measured phase spectrum -.jq.:;
by the 2. If the phase and travel time spectrum includes the white noise, this :‘:lf
U "
noise is amplified at high frequencies. The severity of this depends on the acoustic '.':".:"':
signal-to-noise ratio (SNR), and in the ray case, on the number of rays bounces as T
:,\;“.1
will be shown. RN
o
Al
The organization of this chapter is as follows. Section 4.1 describes the inversions 1'3-“’
of mode travel time perturbation spectra. Section 4.2 deals with inversions of ray ey
SR
data, and Section 4.3 shows selected resolution and variance results. ;'.:;;
f‘: :
e
2
¥
~a
4.1 Inversion of Modes e
N
This section deals with a number of different topics. Section 4.1.1 introduces :{:%t
. r
the mode inverse problem. Section 4.1.2 describes how we discretized the spatially N, '::E
Y
dependent frequency-direction spectra. The solution technique we use in this thesis "'
is described in Section 4.1.3. The tradeoff between resolution and variance to de- Al
\\
termine the unknown Lagrange parameters is illustrated in Section 4.1.5. Sections E:f-
..\ !
4.1.2, 4.1.3, and 4.1.5 are applicable to both mode and ray inversions. Section 4.1.6 ]
shows the inversion resuits using a single mode between each transceiver. 3
F)
tote]
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4.1.1 Posing the mode inverse problem E:':a
N
Here, we assume the surface wave frequency-direction spectrum is spatially de- ..-S.
pendent. The algebraic relations (Egs. (3.169) and (3.171)) between the phase and G,
R
travel time spectra and the frequency-direction spectrum do not hold in this case. ; ‘:."é,':::,
For a tomographic source located at 7; and a receiver at 7;, Eq. (3.171) can be ‘:h ':'::'
generalized to Qﬁ '."7'.?'
T*(Q) = di2rg / K F(Q, i, F)dF + & (4.181) E‘.‘;;E.‘."-?-i
o o
where & is an error term discussed below and we have left out the explicit dependence i “,'_,'}j
on mode number n of d, and 'r:';“-. We have assumed that the frequency-direction by P
spectrum, F(0, a;j,7), is a slow function of range. :;EEEJ :
A consequence of assuming quasi-homogeneous spectra is that spectral compo- ;3’,‘5;?
nents are not independent as in the homogeneous case. (For a discussion of such n‘
nonstationary random processes, see the text by Bendat and Piersol [58].) The ‘$h .§
error term & is proportional to the spectral component dependence. However, if we R .,?:;f
assume that the spatial scale of the spectrum is much greater than the longest wave- et
length in the spectrum, the dependence is weak and we may neglect é&. Of course, as :!’Trw
the spectrum approaches homogeniety at all ranges, the dependence disappears, i.e. 'C:}lf
2 — 0 and Eq. (4.181) becomes identical to Eq. (3.171). One could write a similiar “.“\,(3
relation to Eq. (4.181) based on Eq. (3.169) for the phase perturbation spectrum ' -- R 7
which would be the same except for the replacement of d; by ¢,. 5\\&\
Note that all modes that turn at the sea surface have a similiar dependence on :\ "‘}‘:"}"\t
the frequency-direction spectrum. The only difference between spectra of one mode %}h‘ - 4
and another at this level of approximation is the coefficients ¢, for phase and d;n ‘Q?'_'{E’..EI ‘
for the travel time. This has important experimental ramifications for we could use Eﬁﬁ%
any one of the propagating modes. The choice could be based on SNR, resolution, & v "'
etc. However, for higher mode numbers, the approximation that the mode phase $~ N
Wt

x ‘> 1
,0 ',o ‘.1 . ,l::.c',: .l .l". ..‘ X "ﬂ'\.::\ \“\:QJ-\ e .'\':,\"\:.\’ SRCSAR ':
»,
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Figure 4.1: Geometry for discretizing the relation between travel time spectra and ‘
surface wave frequency-direction spectra. See Eq. (4.182). :{:!:ﬁ

and sea surface height are linearly related starts to breakdown, i.e. when cja ~ cza. 's;;;é
Those modes would probably not be useful anyway because they would attenuated
due to their high vertical wavenumber. There is no reason why we could not use
multiple mode spectra in the inversion to improve noise tolerance. For simplicity,
however, we restrict ourselves in this thesis to inversion of a single mode spectrum SN

measured at each receiver from each source. R "
The first step to solving Eq. (4.181) is to discretize the integral, i.e.

32 ,
Tmode() = JQ:_QZ.:F(“’ oiji a) Arija (4.182) o

where Ar,;, is the distance the mode travels in the box whose center is at 7, at ,;:.:;:
angle a;;. These quaatities are illustrated in Fig. 4.1. o
We then form a vector f of the unknown frequency- direction spectra F that is !

a function of box k with center located 7, and sector | with center located at angle “.:.H
]
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F(Q,&,7)

F(“» &2’ ?l)

F(ﬂ, &L’ ?l)

£1(0)=| F(0,a,R) (4.183)
F(Q, &, 7)

F(na &L-h FK)

L F(ﬂ,&;,?x) J

We can form a vector t of the measured travel time fluctuation T{°% measured

at the jth receiver from the ith source.

[ TR*(Q)
TR*(0)
t(Q) = T?}“;'(ﬂ) (4.184)

| TR*(Q)

-

The t is a vector of length M. We assume that TT°d = TT°%, i.e. so that the vector
t only includes the independent pairs. For example, if we have 8 transceivers, we
have 7 4+ 6 + 5... + 1 = 28 different paths and therefore M would be 28.

We can now form the matrix equation

t= g‘%ct +n, (4.185)

where t is the vector of length M made up of the travel time or phase perturbation
spectra measured from each source to each receiver.
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The vector f is the unknown vector of length N = L x K of the frequency-
direction spectrum at all discrete range boxes and angular sectors. Section 4.1.2'

discusses the discretization of the frequency-direction spectrum. The matrix G

is the M x N kernel matrix that has all the geometrical information implicit in

Eq. (4.182) and, importantly, is independent of frequency {l. The vector n is a noise
vector to be addressed below. For a realistic number of sources and receivers, and
for a realistic range-dependent discrete model of the frequency-direction spectrum,

the N is greater than M, i.e. the problem is underdetermined.

4.1.2 Model Discretization

We have discretized the frequency-direction spectrum into vectors. The dis-
cretization used is 9 range boxes, each 20x20 km, and 18 angular sectors, each 10
deg, giving 162 unknown values of our frequency-direction spectra model to be de-
termined at each frequencies .01 Hz apart between 0 Hz and .5 Hz. Because of the
left-right ambiguity deacribed earlier, we will only invert for directions from 0 to
180 deg. Figure 4.2 illustrates the discretization used here. We have simulated a
tomographic array of 8 transceivers on a 25 km radius circle within the 9 boxes.
Figure 4.3 shows the locations of the 8 transceivers and all the acoustic mode paths
between them. The data vector t consists of the phase or travel time spectrum at
each frequency measured at each of the transceiver locations shown in Fig. 4.3. The
same generalized inverse is applied at each frequency.

Data was simulated using a frequency-direction spectra model described by
Donelan et al.[27) using a modified JONSWAP(24] frequency spectrum and a sech®
directional dependence. The wind speed is taken to be 10 m/s at a height of 10 m
above the mean surface height. The wind direction is from 90 deg, i.e. off shore.

The shore is 40 km from and parallel to the top boxes as shown in Fig. 4.4.
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The kernel matrix G can be interpreted in the following manner. The value f‘*‘?t:?*fi
of the G matrix entry is the distance traveled by the mode in each box received e
at the appropriate transciever. Figure 4.5 illustrates the G matrix in a manner Wb
similiar to a beam pattern. The direction of each sector is perpendicular to the ::;:':u,
path of the mode. The radius of the sector is proportional to the distance the mode
traveled in the box. The asymmetry of the pattern around 90 deg is due to the fact AN
that we discretised in direction with sectors 10 deg wide while the mode paths are WA
22.5 deg apart. The corner boxes have smaller sectors because the modes traveled _
proportionally less distance in those boxes. .‘.,,;.52

4.1.3 Solving the inverse problem

We form a quadratic functional that is sensitive to model estimation error and
model smoothness given by

L(f) = (Gf - t)TW(GE = t) + MITS £ + AfTS,f (4.184) L
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Figure 4.5: Graphical representation of the kernel G.

where W is a weighting matrix which allows us to use different types of measure-
ments with different levels of confidence. The matrices, S; and S;, are used to
smooth over direction and space, respectively. We describe them in more detail
below. The Lagrange multipliers, A\; and Ay, determine how much smoothing is
introduced in direction and space. Assuming here that they are known, we will
describe th§ procedure for determining them further on. |

We now derive the vector f which minimises L. First, we expand Eq. (4.184)
(following Liebelt(63]) as

L(f) = (fTGT — tT)W(GL — t) + MITSif + AT S, (4.185)

L(f) = TGTWGE — tITGTWt - tTWGHE + tTWt + M fTS,f + Af7S,f (4.186)

Because the third term in the preceding equation is a scalar, we can transpose this

term to obtain
'
L{f) = {TGTWGE — 2TGTWt + tTWt + MfTSf + A fTS,f (4.187) -.\‘: N2
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We next differentiate Eq. (4.189) with respect to the components of f yielding R
PN
d—L. = T - T l“"'\::"
of 2GWGE - 2G  WT + 2A,5,f + 2);S,f. (4.1%) A
Setting the expression above to zero and solving for f we get o :
2 LN
f= iz-(GTWG + 18 + t\zSz)-lGTWt. (4.191) <o
2ndig RS
The solution given in Eq. (4.191) is analogous to the weighted damped least squares 7f >
solution [65,66,67,68). .*"‘ :
XL
We have chosen to break our unknown frequency-direction spectrum model "..Q.p :f
A
F(7,9, a) into a discrete vector {. Since frequency (1 is only a multiplicative factor oI N
in the kernel G, we need only compute one generalized inverse operator G;“ from } S ":
Eq. (4.101) i.e. -;E 3
N it RN
G' = m(c WG+ A1 $, + AzSz) G'W, (4.192) R
We thus perform one NxN inverse operation for all frequencies desired. ,:SE,,’::
{ ‘.;.
4.1.4 Smoothing Matrices 4
Smoothing matrices were introduced into Eq. (4.192) to stabilize the estimate of ;:}'
the unknown spatially dependent frequency-direction spectrum vector f. If the ma- :$
trices were absent, there are an infinite number of solutions, i.e. no unique solution oy .
exists for our underdetermined problem. Yyt
The smoothing matrix is S; = DTD, where D, is a matrix which contains the :ﬂsﬁ
finite difference representation of some norm of our solution. To minimize the second :
derivative of f over direction a, which gives D;; o« ~2 and D;; « 1 wherever i and _ - ]
j represent neighboring directions in f. So then the finite difference representation ﬁt&
AL,
of our second derivative is §S E
W,
d*f f(ao ~ Aa) = 2f(a0) + f(a0 + Aa) W
— = . (4.193) ]
da?|, Aa? 7
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| R
| A :Eﬁ
‘ where Aa is the finite difference. ' \ ::d!f
% Besides the smoothing done in direction for interpolation, we also must smooth :f‘:;:?E:‘
in (x,y) space or, in other words, over boxes. To do this, we introduce a new F. ',:;.‘.

smoothing matrix S; = C3 ! where C; is the correlation matrix for the unknown 0 E:E:‘:

vector f over the spatial variables (x,y). The values for the correlation matrix ':‘:‘:‘::':

entries reflect the fact that physically adjacent boxes should not have very different B
frequency-direction spectra. For our inversions, we assumed that adjacent boxes :':::.
had a correlation of .9 between adjacent boxes parallel to shore, and .7 between "'!:235-:2
adjacent boxes perpendicular to the shore. All other boxes had proportionally less '-:'3::?'
correlation based upon distance apart and relation to shore. These correlation if
values were derived as follows. We calulated a covariance matrix 2: N

SN
C, = E((f - E(f))(f - E(1)"] (4.194) 4% 4
. . . RN
The unknowns in the model were the wind speed and direction. The wind speed was &s." ..:::‘:“:
assumed to have a Rayleigh distribution with a mean of 10 m/s. The wind direction Yo ";;

was assumed to evenly distributed between 0 and 180 degrees. The correlations were
then calculated, giving the results stated above. Moreover, moderate variations in

the values of the correlations had very little effect on the inversions.

4.1.5 Resolution and Variance Tradeoff

We choose the Lagrange parameters A; and )\; used in the generalized inverse in
Eq. (4.192) based on the tradeoff between resolution and variance of our unknown
frequency-direction vector f.

The covariance matrix of f characterizes the degree of error amplification in the

inversion process and is given by

P E|S
[ ¢
-

[covt] = G;'G;'T (4.195)
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for uncorrelated data {69]. The size of the covariance is often computed as the sum
of the diagonal terms of the matrix as
N
size([covE]) = D _[covf];; (4.196)
=]l
The resolution matrix characterizes whether the components in f can be inde-

pendently resolved, and is given by
R = G;'G. (4.197)

The ideal case is that each component of f would be resolved perfectly, i.e. when
G, = G in which case the resolution matrix would be the identity matrix. A
measure of the goodness of the resolution spread is
N N
spread(R) = EE[R., - I} (4.198)
The resolution spread and size of the covariance matrix can be plotted as a func-
tion of one of the Lagrange multipliers as shown in Fig. 4.6. Varying A, corresponds
to moving up and down the curve giving a whole set of solutions. At one extreme,
the solution has large variance and the system has high resolution. At the other
extreme, the opposite occurs. There is a range of good choices for A, in which the
resolution is adequate while the variance is tolerable. For our case, there is another
Lagrange multiplier A\; we must vary, so the tradeoff curve is actually a tradeoff
surface in (\;,Az) space, but the analysis is the same. For each of the different

inversions performed, the parameters were varied until acceptable resolution and

variance were obtained

Because the inversions were performed on synthetic data, we have the true
frequency-direction spectra model. We are able to compute the total mean squared
error between the estimate and the true model. Once acceptable resolution and

variance were obtained, variations in A\; and A; of an order of magnitude either
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Figure 4.6: Tradeoff curve between resolution and variance.

way in each parameter increased the total squared error by about 20 % in both the
noise-free and noisy-ray cases. Therefore, the inverse solution is basically robust o

to the exact choice of the parameters. Resolution and variance results for specific o

inversions are presented in Section 4.3. - NI

4.1.8 Mode Inversion Results: No Noise Case ey

A spatially varying frequency-direction spectrum is difficuilt to present. There-

fore, we present results of the inversions in three different formats for both modes "‘:‘*:E:".:f'

¢
el

and rays. Each format brings out different aspects of the inversions. The formats ‘ ""':‘:::‘Z

m: ‘.‘t‘l‘ii‘ .'”'
1. Contour plots with gray level proportional to the spectral amplitude.
2. Graphs of the spectra versus frequency at a constant direction of 90 deg. ‘h} Wi

3. Graphs of the spectra versus direction at a constant frequency of 0.2 Hz.
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Figure 4.7: Contour plot grey level key. :.::.':ég

' In this section, we present the results of the inversion of mode travel time per- ;:1%
turbation spectra derived from the frequency-direction spectra. That is, we have o
b perfoct forward data with no noise. Figure 4.7 shows the grey scale used in all the s
contour plots in this thesis. Figures 4.8, 4.9, and 4.10 show the results of inversion s
o in the grey level contour plot format. The units of the spectra are m?sec/rad?. ;
5:' Each of the figures present the results for one column of boxes. The rightmost R :'és«
‘ contour plots labelled “ORIGINAL MODEL" show the model (evaluated at the e
center of each box) used to produce the simulated forward data. The features of e

the model are evident in the figures. Most of the energy is concentrated in between ’ 0

60 and 120 deg in direction. The wind is blowing offshore (down the page) with iu“‘:
— increasing fetch as one goes down the page. The model shows the fetch dependence o
af}'; in amplitude of the spectra, with the furthest fetch spectra rising more than 25 % A )
above the top boxes. Also, the peak frequency goes from 0.25 Hs in the top boxes #
o to near 0.20 Hs in the bottom boxes. Because the shore is parallel to the top boxes, ‘ “':
there is no change in the model spectra along the rows of boxes, hence the high &,.ﬂ:
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Figure 4.8: Contour plot of inversions of modes with no noise for the fre-
quency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey level key.
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correlation between shore parallel boxes.

The leftmost contour plots labelled “TOMOGRAPHIC ESTIMATE"” in each

of the figures show the results of the inversion. The inverted spectra follow the E ¥,
energy of the spectra in direction very well. The location of the peak frequency ;:

is tracked between boxes. The amplitudes of the inverted spectra aiso agree fairly
closely with those of the model. The center column of boxes 2, 5, and 8 match the .

0
best as shown in Fig. 4.9. We used a smoothing matrix S; to help in reducing the '!f::if.

underdeterminedness of the inversion. This smoothing matrix is least helpful on
the corner boxes because the path lengths of the acoustic modes are least in those

boxes, and hence, the amplitude of the entries in the kernal matrix G. cﬂ" N

The inversion results can also be presented in a more standard y versus x format.

-f Figure 4.11 shows the inversion-model comparison for the same three columns of :‘s::
| O\ )
! boxes as we did for the contour plots. The spectra are plotted versus frequency ,::I:

for a constant direction of 90 deg. The smooth line is the original model used

to generate the synthetic data. The dots show the estimated spectra from the

inversions. The inversions were repeated every 0.01 Hz. The results show that the IE

: inversions are very accurate in regions away from the peak frequency, while they :§‘
; are moderately accurate at the peak frequency. The difference may be due to the .
: smoothing matrix S; which correlates adjoining boxes and prevents abrupt changes ?:
:' in the spectra between boxes. ::'5::

We also plot the spectra versus direction at a constant frequency of 0.2 Hz as "‘ )

e v v T v e

shown in Fig. 4.12. This type of presentation shows how well the inversions follow w \ .
the growth of the spectra with fetch. The corner problem is also evident in these W\
L plots. The inverted result follows the orignal model in direction very well. "
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curve.
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Figure 4.13: Ocean waveguide for inversions.
4.2 Inversion of Rays

A ray samples the surface at only discrete points along the path between source
and receiver. While we had to discretize the integral relating mode travel time
spectra and surface wave spectra, the ray travel time is inherently discrete. For all
inversions, we will assume an ocean waveguide as shown in Fig. 4.13. The waveguide
depth is 400 m. For convenience in calculations, both the source and receiver are
positioned at the bottom of the waveguide. The range between source and receiver
depends on the source-receiver pair of interest from Fig. 4.3. In the mode inversions,
we only had to use one mode per source-receiver pair because the mode sampled the
sea surface continuously. However, now we must use a number of rays per source-
receiver pair for the inversion to succeed. For most of the inversions with rays, we
use six rays per source-receiver pair ranging from rays with 10 surface bounces to
15 surface bounces. This gives us 6 rays multiplied by 28 source-reciever pairs for a

total of 168 pieces of data. Remembering that we are estimating 162 unknowns, we
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might assume that we are now overdetermined. But that is not the case. The rays
are not completely independent, leaving us with a still underdetermined inversion in
(x,y) space. For comparison, we also performed an inversion on three rays with 13
to 15 surface bounces, giving a total of 84 pieces of data. We studied the sensitivity
of the technique to the number of ray bounces by performing an inversion using
nine rays with 1 to 9 surface bounces.

In Section 4.2.1, the ray inverse problem is posed in a similiar manner to the
mode case. Section 4.2.2 presents inversion results with noise-free data from six
rays. Section 4.2.3 deals with inversions of six rays with the realistic SNR's that
are obtained in tomography experiments. Section 4.2.4 shows the results when the
SNR'’s are 10 dB less than Section 4.2.3. The effect of only using three rays in the
inversion is demonstrated in Section 4.2.6. The inversion resuits using nine rays

with 1 to 9 surface bounces is described in Section 4.2.7.

4.2.1 Posing the Ray Inverse Problem

When the surface wave frequency-direction spectrum is spatially inhomogenous,

we can generalize Eq. (3.175) in a similar manner to the mode case by

(2Ics;;oA,,1’21rg ﬁx F(Q, aigy 7). (4.199)

We discretize the frequency-direction spectra F into a vector exactly like Eq. (4.183).

om(n) =

nij

However we now have a much longer data vector t made up of the phase perturbation
for each source-receiver pair and for ray bounce numbers 10 though 15 for the six
ray inversions, 13 through 15 for the three ray inversions, and bounce numbers 1
through 9 for the nine ray inversions. The generalized inverse is found in the exact
manner as the mode inverse, i.e.

n3

= T MS; + A2S,) 'GTWH. 4.200
t = r@hamdyy C WO+ S+ S (4.200)
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4.2.2 Six Ray Inversion Results: No Noise Case ::;:. :é
In this section, we present the results of inversions of ray travel time perturbation :::'E;.::
spectra synthetically derived from the frequency-direction spectra. That is, we have *J'L ‘:",'5
perfect forward data with no noise. We used six rays between each source and i&* .'3::‘::«
receiver with number of bounces between 10 and 15. Figures 4.14, 4.15, and 4.16 .:':.::'.:}'.:‘
show the results of inversion in the grey level contour plot format. The units of —
the spectra are again m2sec/rad?. The results obtained using six rays are almost ;t;::l::?;:',
indistinguishable from the mode inversions. As the number of rays used in the '.%:':?‘"é'
inversion increases, the quality of results approach that using one mode. As we F:::‘,::f?::“
have described, the mode continuously samples the sea surface while rays sample :".:"";.:}:;:E
discretely. For these results, we increased the number of rays in the inversion until ::.?};!a:i“:‘,'::
they approached that of the modes. The results using three rays per source/receiver E‘:‘«;::i:;.‘:':'.:
pair (bounces 13-15) are shown in Section 4.2.6. e
The ray inversion results can also be presented in the standard y versus x format. \ ':::é:é?:'::;
Figure 4.17 shows the inversion-model comparison for the same three columns of ".E::::f::zf
boxes as we did for the contour plots. The spectra are plotted versus frequency for a R
constant direction of 90 deg. The smooth line is the original model used to generate ‘\‘& ,‘, ‘ &
the synthetic data. The dots show the estimated spectra from the inversions. The (*"5, ), ¢
inversions were repeated every 0.01 Hz. These plots show that there is very little }i ; N
difference between the six ray inversions and the mode inversions. We also plot the

spectra versus direction at a constant frequency of 0.2 Hz as shown in Fig. 4.18.

4.2.3 Six Ray Inversion Results: Noisy Data

Spectral noise is defined here as the power spectrum of the error in the travel
time or phase estimates incurred when we have a finite acoustic SNR. Given the

SNR we can compute the standard deviation of the travel time and phase estimates
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Figure 4.15: Contour plot of inversions of six rays (bounces 10-15) with no noise
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key.
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1
Or = Mf—s—\/N_R (4.201)
Tp = 2ﬂ'fdf = K}ﬁ (4.202)

where f and A f are the center frequency and bandwidth of the acoustic signal. We
model the spectrum of these errors as white so essentially a constant in frequency
is added onto the phase or travel time spectra.

We now calculate the SNR. The transmission loss of a ray (for our case of

bottom-mounted tranceivers) due to spreading is given by Tindle and Bold [70] as

TL, = R_\TITI(?%’T); (4.203)
where R is the range between source and receiver, H is the height of the waveguide,
and n is the number of ray bounces. The loss due to the surface scattering is given
by (40]

TL,=(1- —)" (4.204)

where P = 2kosin 8, is the Rayleigh parameter, 8, is the incidence angle of the n‘*
ray and o is the standard deviation of the surface height. For example, for P = .2,
n=15, H=400 m, and R = 50 km, we get

TL = TL, + TL; = —48.4dB (4.205)

The source level SL assumed here is 185 dB, which is typical of tomographic
sources(4]. We will assume an acoustic noise loss of -81 dB and attenuation due
to other sources such as volume effects, bottom effects, etc. of -5 dB. The atten-
uation loss used here is very rough, but for the ranges discussed in this thesis (10
- 100 km), -5 dB is probably ballpark for totally internally reflected rays. The

resulting calculation becomes
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For a transmitting frequency of 220 Hz and bandwidth of 12 Hz typical of Webb
Research Corp. organ pipe sources (4], the phase variance can be calculated using

Eq. (4.202) to be 11 deg?.

For each ray in our simulation, a different SNR is calculated and the appropriate
white noise is added to the phase spectrum due to the surface waves. Note that
Eq. (4.200) contains a multiplication by (12. Because of this factor, any flat phase
spectrum (like white noise) will be affected at higher frequencies much more than
low frequencies. The phase estimation error will be transformed into a steadily
increasing noise floor in the surface wave frequency-direction spectrum. Using the
values assumed above, we performed an inversion on this “noisy” data. The results
are shown in Figs. 4.19, 4.20, and 4.21 in the contour plot format, in Fig. 4.22
as plots versus frequency, and in Fig. 4.23 as plots versus direction. Comparing
these plots to their no noise counterparts, we can see small differences at high
frequencies as we expected. Note that this is just where we may be limited by the
Nyquist criteria anyway. We cannot send signals too often due to the mulitipath
arrival structure spread. But noise can also limit surface wave tomography at high
frequencies, making this the most difficult part of the spectrum for our technique

to work in.
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4.2.4 Six Ray Inversion Results: Very Noisy Data

The sensitivity of the inversions to more noisy data was assessed by using an
acoustic noise level of -91 dB instead of -81 dB. The results are shown in Figs. 4.24,
4.25, and 4.26 in the contour plot format, in 4.27 in the plots versus frequency,
and in 4.28 in the plots versus direction. Comparing these plots to their no noise
and lesser noise counterparts, we can see dramatic differences at high frequencies.
The directional dependence of the noise level in the contour plots is directly due
to longer ranges the rays have to travel in some directions, thus losing SNR due to

spreading, scattering losses, etc.

4.2.5 Integration with Directional Wave Buoy -

A
A
B

e

]
Pl

>

Due to the generality of the inversion process, the integration of tomography

=2

.

with other oceanographic measuring systems such as satellite and temperature sen-

sors for eddy-scale tomography is fairly straightforward [6,71,5|. We can also aug-

A
ot #
FELLESTE P

ment surface wave tomography with a more traditional wave measurement device

F.

such as a directional wave rider buoy. This is done as follows. The unknown

frequency-direction vector f given by Eq. (4.183) remainas the same. We have to ;
modify the other matrices as follows. The measurement vector t now becomes "f“k
t tomography "‘?::b
t= e (4.206) AN
t wavebuoy ? .:5:&
The matrix W must also be augmented to normalize the errors between the two R
sensor systems. For an example, we assume that a directional wave buoy is located :\ﬁ -,
at coordinates (10 km, 10 km) in the map given in Fig. 4.4. The kernel matrix must :.::
be augmented to include a measurement of £ in box 1. Note that the inversion is ‘r‘-g
X .
now frequency-dependent however, and so must be performed at every frequency
M
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Figure 4.24: Contour plot of inversions of six rays (bounces 10-15) with 10 dB more
noise for the frequency-directional spectra in boxes 1, 4, and 7. See Fig. 4.7 for grey
level key.

140

OGSO 5 % 80 %0 Fua R ) " DO By
B

Ty “.’.':’J,I,‘ "llz‘;igl u 1."5.31“11 AN L [

%



BOX 8
ORIGINAL MODEL

.
NS

NS

0 01 02 03 04
FREQUENCY (Mz) FREQUENCY (MHz)
BOX 5
TOMOGRAPHIC ESTIMATE ORIGINAL MODEL

0 01 02 03 0
FREQUENCY (Mz)

BOX 2
TOMOGRAPHIC ESTIMATE ORIGINAL MODEL

LN ":‘;.';-f.l(r .

!
4

AN
;'--Q@V/,, iy
0 01 02 03 0.4 0o 01 02 03 0.4
FREQUENCY (Ha) FREQUENCY (Hz)

Figure 4.25: Contour plot of inversions of six rays (bounces 10-15) with 10 dB more
noise for the frequency-directional spectra in boxes 2, 5, and 8. See Fig. 4.7 for grey
level key.
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Figure 4.26: Contour plot of inversions of six (bounces 10-15) rays with 10 dB more
noise for the frequency-directional spectra in boxes 3, 6, and 9. See Fig. 4.7 for grey
level key.
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desired. This may multiply computations by a factor of 25 or so, a large but not
impossible increase.

Figures 4.29 and 4.30 show the results of an integrated measurement using modes
and the directional wave buoy. All measurements were noise free. As expected, in
box 1, where the buoy is located, the inversion results are improved over those in
Figs. 4.11 and 4.12. The resulits in box 1 are just about perfect but the results in the
adjoining boxes are also improved. The least improved box is number 9 diagonally
opposite box 1 with the buoy. The correlation between these boxes is the least and

the results reflect that fact.

4.2.6 Three Ray Inversion: Noisy Data

For comparison, we also performed an inversion on three rays with 13 to 15
surface bounces. The rays were the same used in Section 4.2.3, with error introduced
by the typical SNR used in tomography experiménts. The results are shown in
Figs. 4.31 and 4.32. As compared with the six ray inversions in Figs. 4.22 and 4.23,
the three ray inversion results are poorer in estimating the spectrum near the peak
frequencies. The poor results are due to the less dense sampling of the sea surface

by the three rays as compared to the six rays.

4.2.7 Nine Ray Inversion: Noisy Data

We also performed an inversion on nine rays with 1 to 9 surface bounces, with
error introduced by the same SNR as described in in Section 4.2.3. The results
are shown in Figs. 4.33 and 4.34. As compared with the six ray inversions in
Figs. 4.22 and 4.23, the nine ray inversion results are poorer in estimating the spec-
trum near the peak frequencies. But also note the performance at higher frequencies

in Fig. 4.33. The noise effect is more prominent, even though we are using more
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rays than in Section 4.2.3. The cause of this effect is the fact that the rays with :{..':;’::;3?‘}»
bounces between 1 and 9 have lower rms travel time perturbation because of the :.‘::‘:.'“:.i:;:' .
fewer bounces. With the same spectral noise level and lower signal level, the noise "".'"“"V
is amplified as compared to the case where we use rays with bounces between 10 Y "‘i‘.:::
and 15. _ .:‘3
.::Ylf‘a‘

4.3 Resolution and Variance Ny
4::;3:

We have plotted the variance as a function of box and direction in Fig. 4.35 for :5':::;':“:2
the matrices used in the 6 ray inversions. Note the large variances at directions -
above 90 deg in boxes 1 and 9. The errors depicted in Figs. 4.24 and 4.26 are large '\0:
where the variance is large in Fig. 4.35, as we would expect. The lack of angular :
dependence of the variance in box 5 in Fig. 4.35 can be easily seen in Fig. 4.25. “"'""“'
In Section 4.2.5, we added a directional wave buoy in box 1 that measured é}éa:;:.sz
the frequency-direction spectrum with no noise. The variance for that integrated .':'::“'3{";
measurement is shown in Fig. 4.36. We see that, in box 1, the variance has gone to . "l‘:"i
zero. In the adjacent boxes, the variance is lowered compared to the acoustics-only X A:
case of Fig. 4.35. In the boxes furthest away from box 1, the improvement in the E:Ef-t:_\
solution variance is the least as we would have expected. aates

Figure 4.37 shows the resolution that we can obtain in box 2 at 90 deg and
leakage into the other boxes. Because of the smoothing introduced to enable the
inversion to work, we tend to smooth through boxes 1 and 3 to the extent shown in
the plots. We do better across the other boxes that are perpendicular to the shore.
This is because the correlations between boxes parallel to the shore (e.g. boxes 1,

2, and 3) are higher than those perpendicular to the shore (e.g. boxes 1, 4, and 7).

Figure 4.38 show a similiar plot for the normalized resolution we obtain in box 5 at
90 deg. The high smoothing between boxes 4, 5, and 6 is evident in the high side
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lobes in boxes 4 and 6. Our inversion (with the current correlation structure) will
not admit solutions that change drastically across the shore-parallel boxes.

In direction, we smoothed with a method similiar to a cubic spline. We did this
because we had no data on the spectrum in between the directions perpendicular
to the acoustic mode path as we illustrated in Fig. 4.1. The cost we pay for this, as
Figs. 4.37 and 4.38 show, by 20t being able to resolve features in the spectrum that
are less than 20 deg wide. Thus, any compact swell spectrum could slip in between
the sensing directions and we would miss it all together. We could have predicted
this without a calculation by noting that the acoustic paths are 22.5 deg apart, and
spectral features less than this might slip between the sensitive directions.
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Chapter 5 :-.:.! '
Conclusions )

5.1 Summary

This thesis has developed a new method for estimating quasi-homogeneous,

quasi-stationary surface wave frequency-direction spectra using acoustic tomogra- !

22

=L

phy. The basis of the method is the tomographic inversion of travel time fluctuation

spectra of acoustic signals transmitted from a number of sources and measured at ::Z%"_ 2
a number of receivers. ‘;.;:‘%:;
We showed in Chapter 2 how the phases and travel times of acoustic modes and . %’:“,:.SE
rays are affected by the height of the sea surface. Acoustic mode eigenvalues can ,‘Eﬂ“"‘ig}f
be expressed as a linear function of sea height. Since mode phase, under the WKB »
approximation, is the integral of the eigenvalue, we showed that the mode phase ; o
and travel time are functions of the integral of sea surface height between source : {
and receiver. We showed that the spreading of an acoustic pulse was due to mode :"::
coupling and quantified the effect. Adiabatic mode theory and the WKB approxi- .‘.:';"b :
mation were shown to generally be adequate for representing the effects of the rough '::E:E‘:E..‘
sea on the modes for realistic frequencies, waveguides, and ranges used in tomog- ':"‘:f'\ '
raphy. Acoustic ray phase and travel time fluctuations were related to the summed '»
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sea heights at the ray bounce locations. We derived the relationship between the
sea surface time-space covariance and the covariance of the phase and travel time
fluctuations for both modes and rays measured at a number of transceivers.

In Chapter 3, we showed that examining the temporal Fourier transform of

the sea surface covariance led to the idea that both ray and mode phase/travel

time spectra were dependent on the waves which traveled perpendicular to the

source/receiver heading, with a 180 degree ambiguity. We showed the application

of the theory to data measured in the MIZEX ‘84 Preliminary Tomography Exper- ;',,.} N
iment in the Greenland Sea. In that experiment, only one source and one receiver > .
were deployed so that we could not resolve directional spectra. But the shape of ; .b:‘g‘f
the frequency spectrum and the daily dependence on wind speed strongly suggested k-. \
that the method is valid. By
In Chapter 4, we showed how to estimate the quasi-homogeneous frequency ,%&;-;'
spectrum from the tomographic data. We used a variant of the damped least squares NN ‘
inverse techinque in which the damping by Lagrange multipliers determine the t;;'id‘. X
where the solution lies on the resolution/variance tradeoff diagram. The multipliers E“’.{f" :
were varied until reasonable results were obtained. Because we used a known model m
to generate synthetic data, we were able to calculate the total squared error of our .. '
estimate. Variations of the Lagrange multipliers by an order of magnitude one way ‘
or the other did not significantly change the total error of the estimate. o~
We solved a synthetic inverse problem for a fetch-dependent spectrum as a : ]
function of location, direction, and frequency. Our inverse technique for the spectra ‘:"':
needed only one inverse operation (of size equal to number of directions times E., "
number of spatial boxes) independent of frequency and then applied the generalized ¥ ;
inverse to the acoustic spectra to estimate the frequency-direction spectra at any : :%
frequency desired. The effects of error in the travel time estimation are shown to \ N
degrade the frequency-direction spectra estimate at high surface wave frequencies.
R
s
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A theoretical variance estimate from linear systems theory is shown to explain these
errors. The resolution of the generalized inverse was investigated and used to explain

the leakage of energy between spatial boxes.

5.2 Comparison with Other Methods

Surface wave tomography has the potential to equal or better the surface wave
frequency-direction measurement systems used currently. We have shown that sur-
face wave tomography suffers from a 180 degree ambiguity like some radar meth-
ods which also integrate along one spatial dimension, in particular the FM ROWS
system.(32] Other radar methods which image the surface directly, such as the Sur-
face Contour Radar (SCR), can eliminate the 180 degree ambiguity.[33] There is
a possibility of resolving the ambiguity in surface wave tomography by using the
Doppler information of the waves in the direction parailel to the acoustic path, but
this is as yet unexplored.

The resolution, in direction, of surface wave tomography depends on the the
ratio of acoustic path length and surface wavelength, with typical resolution less
than 1 degree. To compare, the SCR has resolution on the order of 10 degrees.
However, to sample in direction every 12.5 degrees, we showed that surface wave
tomography needed 8 transceivers. The resolution of the pitch and roll buoys is
usually not adequate for measuring the angular spread of the spectra.[72] Wave
staff arrays have demonstrated directional resolution of 15 degrees.|[27]

The spatial resolution of surface wave tomography described in this thesis was
20 km. However, this number could be reduced to 6 km by changing the spatial box
geometry from 3 20 x 20 km boxes to 10 6 km strips. The SCR has demonstrated a
spatial resolution of 5 km.[33] The frequency resolution of surface wave tomography

is determined by the resolution of the spectral estimation method applied to the
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travel time fluctuations. RO
One limitation of surface wave tomography is its dependence on a linear disper- "
sion relation. It cannot directly measure the wavenumber-frequency spectrum like ::.:
wave staff arrays can. REN,
RO
e
5.3 Original Contributions e
This thesis fulfills one of the requirements for a doctorate from the MIT/WHOI %va:
Joint Program in Oceanographic Engineering. As such, it documents an original :'-":;‘:
contribution to the field. However, it is sometimes difficult to separate the original p
contributions of a thesis between student and advisor. My advisor, Dr. James F. Lynch, ? ':.‘EE
contributed some original material to this thesis and in the those sections where I Ry hf
was the original contributor, he was the inspiration and guide. Here, I want to list K
those sections which are my own original contributions, which were my advisor’s, q:::-:::
and which are tutorial in nature. Chapter 1 is introductory and historical material. '\"':::'
In Chapter 2, Sections 2.1.1 on range independent normal mode theory, 2.1.2 :::‘::'5‘.'.:
on range dependent mode theory, and 2.2.1 on ray eikonal and transport equations, : e
are tutorial in nature. Section 2.1.6 on mode coupling effects is contributed by i_::":é
Dr. Lynch. Section 2.1.3 on phase and travel time perturbations due to a rough sea ‘;}‘- :z
surface was essentially a joint effort between Dr. Lynch and myself. Sections 2.1.4 3 ) X
on scattering in canonical waveguides, 2.1.5 on the interpretation of Polcari’s mode (j.
coherence in the Arctic, 2.1.7 on coupled mode Bragg scattering, 2.1.9 on the ap- i”;i\:;
plication of Desaubies WKB approximation breakdown to mode coupling by the :' ",.’
surface, and 2.2.2 on the ray phase and travel time covariance due to a rough sur- r.._ 7
face, are my own original contributions. E’;‘ ‘
In Chapter 3, Sections 3.1 was a review of surface wave spectra. 3.2 on the R 'tslf
frequency-direction spectrum, Sections 3.3 on mode phase and travel time spectra, - -.i-
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by 3.4 on ray phase and travel time spectra, and 3.6 on the effects of the frozen approx- - :-
R 1
l:: imation, are my own original contributions. Section 3.5 is taken predominately from 'E.‘:';
" a paper to be published by Lynch, et al.[56] of which I was a co-author. Chapter 4 -
. . . . L3 3 b ‘
K is mainly my own contribution except for that material explicitly referenced. :" Y
o N
: iR
5.4 Significance of the Thesis o
! T
¥ AR
p The most significant result of this thesis is the development of a new experi- '.::::;
; DatOs
mental technique to study sea surface waves, i.e. surface wave tomography. If such F <l
l. .N' N
' an experiment is appropriately designed, estimates of quasi-homogeneous, quasi- E'&i
x o
! stationary surface wave frequency-directional spectra can be made in addition to &:E:ﬁ
% the other oceanographic measurements. We feel that an important contribution ]
' can be made to the understanding of surface wave/ internal wave interactions by :-:Ef.t’
.
i an acoustic tomography experiment using the results of this thesis. ?'.:::i,{(
[} .J ".*
AT
Another significant result is the analysis of mode travel time and phase fluctu- R .
ations due to surface waves over an acoustic waveguide. In particular, the series TRY
[i N q’.‘-
! expansion of the mode eigenvalue in terms of surface height is quite useful in mod- l::'.:ij;:,‘
L 4 "
elling the effect of sea surface height changes on modal propagation. The first term ';}.';-:;:
SN
in the series was shown to represent a linear dependence of surface height and eigen- :
. QL
value, the basis for surface wave tomography using modes. The second term in the Zﬁ:‘:‘{:‘:
"o, ) Y
series was shown to be a bias term, i.e., the expected value of the arrival time of :;:‘.‘::‘.:‘:::,j
)
the modes was different than that for the mode traveling under a smooth surface. :
This may be a significant effect in shallow water.
U
While this thesis developed no new linear inverse theory, the frequency-independent &:‘\:
b,
generalized inverse would seem to be unique and useful. Also, the effect of travel Sy
.. . ) '
time estimation error being magnified at high surface wave frequencies is interesting. SN
|'L,
LA
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5.5 Future Directions ',:5:

_ oy

The natural extension of this thesis is to verify and implement surface wave EE%E

tomography with an experiment. The simultaneous measurement of surface wave
frequency-direction spectra and internal wave directional spectra might contribute :}E::Z;é

to the understanding of the interaction between them. We plan to locate this ex- ::::E:Z‘f

' periment in the relatively shallow continental shelf region. There, internal waves 3':::‘:‘

may have significant directionality, as opposed to the isotropic internal waves in :::::;

the deeper ocean. This directionality, or equivalently, high correlation between .:EE:EZ

sound speed perturbations measured far apart, would have similiar effects on the .:3:;‘:%::

., acoustic travel times as we have described in this thesis. The acoustic travel time ,v‘,“;
spectra would be most sensitive to internal waves travelling perpendicular to the ,asi:g
: source/receiver heading, yielding estimates of the internal wave directional spec- ‘%‘:‘?‘?
| trum. The shallow depths would enable the acoustic equipment to be moored fixed T
‘ at the ocean bottom, eliminating the need for position estimation transponders, ‘5

and may enable less expensive pressure casings to be used.
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